<span>The mixture that is most likely to form a suspension is flour and liquid water mixed together, as in a mixture like gravy. A suspension mixture is a mixture that has large solid particles, particles that are large enough for sedimentation.</span>
Answer: Thomson
Explanation: It verified J. J. Thomson's work on the atomic structure.
<u>Answer:</u> The limiting reagent in the reaction is bromine.
<u>Explanation:</u>
Limiting reagent is defined as the reagent which is completely consumed in the reaction and limits the formation of the product.
Excess reagent is defined as the reagent which is left behind after the completion of the reaction.
Given values:
Moles of iron = 10.0 moles
Moles of bromine = 12.0 moles
The chemical equation for the reaction of iron and bromine follows:

By the stoichiometry of the reaction:
If 3 moles of bromine reacts with 2 moles of iron
So, 12.0 moles of bromine will react with =
of iron
As the given amount of iron is more than the required amount. Thus, it is present in excess and is considered as an excess reagent.
Hence, bromine is considered a limiting reagent because it limits the formation of the product.
Thus, the limiting reagent in the reaction is bromine.
Answer:
The answer to your question is P = 0.18 atm
Explanation:
Data
mass of O₂ = 0.29 g
Volume = 2.3 l
Pressure = ?
Temperature = 9°C
constant of ideal gases = 0.082 atm l/mol°K
Process
1.- Convert the mass of O₂ to moles
16 g of O₂ -------------------- 1 mol
0.29 g of O₂ ---------------- x
x = (0.29 x 1)/16
x = 0.29/16
x = 0.018 moles
2.- Convert the temperature to °K
Temperature = 9 + 273 = 282°K
3.- Use the ideal gas law ro find the answer
PV = nRT
-Solve for P
P = nRT/V
-Substitution
P = (0.018 x 0.082 x 282) / 2.3
-Simplification
P = 0.416/2.3
-Result
P = 0.18 atm
Answer:
Hope this helps D.
Explanation:
During cellular respiration, glucose is broken down in the presence of oxygen to produce carbon dioxide and water. Energy released during the reaction is captured by the energy-carrying molecule ATP (adenosine triphosphate).