Answer:
CaO + H20 => Ca(OH)2
Explanation:
quick lime ia a oxyde and when it reacts with water it gives hydroxide
Answer:
pH = 5.54
Explanation:
The pH of a buffer solution is given by the <em>Henderson-Hasselbach (H-H) equation</em>:
- pH = pKa + log
![\frac{[CH_3COO^-]}{[CH_3COOH]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BCH_3COO%5E-%5D%7D%7B%5BCH_3COOH%5D%7D)
For acetic acid, pKa = 4.75.
We <u>calculate the original number of moles for acetic acid and acetate</u>, using the <em>given concentrations and volume</em>:
- CH₃COO⁻ ⇒ 0.377 M * 0.250 L = 0.0942 mol CH₃COO⁻
- CH₃COOH ⇒ 0.345 M * 0.250 L = 0.0862 mol CH₃COOH
The number of CH₃COO⁻ moles will increase with the added moles of KOH while the number of CH₃COOH moles will decrease by the same amount.
Now we use the H-H equation to <u>calculate the new pH</u>, by using the <em>new concentrations</em>:
- pH = 4.75 + log
= 5.54
Answer:
The final temperature will be "12.37°".
Explanation:
The given values are:
mass,
m = 0.125 kg
Initial temperature,
c = 22.0°C
Time,
Δt = 4.5 min
As we know,
⇒ 
On putting the estimated values, we get
⇒ 
⇒ 
A nuclear reaction in which a heavy nuclear splits spontaneously or on impact with another particle with the release of energy- fission
A nuclear reaction in which atomic nucleus with the release of energy-fusion
The energy harnessed in nuclei is released in nuclear reaction. Fission is the splitting of a heavy nucleus into lighter nuclei and fusion is the combining of nuclei to form a bigger and heavier nucleus
16 protons
Explanation: S2-: proton number 16; nucleon number 32
There are 16 protons (from the proton number). If it was a neutral atom, there would be 16 electrons.