Answer:
3853 g
Step-by-step explanation:
M_r: 107.87
16Ag + S₈ ⟶ 8Ag₂S; ΔH°f = -31.8 kJ·mol⁻¹
1. Calculate the moles of Ag₂S
Moles of Ag₂S = 567.9 kJ × 1 mol Ag₂S/31.8kJ = 17.858 mol Ag₂S
2. Calculate the moles of Ag
Moles of Ag = 17.86 mol Ag₂S × (16 mol Ag/8 mol Ag₂S) = 35.717 mol Ag
3. Calculate the mass of Ag
Mass of g = 35.717 mol Ag × (107.87 g Ag/1 mol Ag) = 3853 g Ag
You must react 3853 g of Ag to produce 567.9 kJ of heat
The alcohol concentration of the mixed solution is 20%
Simplification :
Based on the given condition, formulate :
35% ×0.40 + 0.6 ×10% ÷{ 0.4+0.6}
Calculate the product :
Calculate the sum or difference :
Any fraction with denominator 1 is equal to numerator : 0.2
Multiply a number to both numerator, denominator : 0.2 ×
Calculate the product or quotient :
A fraction with denominator equals to 100 to a percentage 20%.
How do you find the concentration of a mixed solution?
In general when your are mixing two different concentrations together first calculate number of moles for each solution (n=CV ,V-in liter) then add them together it will be total moles,then concentration of mixture will be = total moles / total volume(liter).
Learn more about concentration of alcohol :
brainly.com/question/13220698
#SPJ4
Explanation:
a. → ?
Removing common ions from both sides, we get the net ionic equation:
b. →
No precipitation is occuring.
c. →
Removing common ions from both sides, we get the net ionic equation:
d. →
Removing common ions from both sides, we get the net ionic equation:
Answer: for the reaction is 5.55
Explanation:
Equilibrium constant is the ratio of the concentration of products to the concentration of reactants each term raised to its stochiometric coefficients.
The given balanced equilibrium reaction is,
At eqm. conc. (0.010) M (0.15) M (0.37) M
The expression for equilibrium constant for this reaction will be,
Now put all the given values in this expression, we get :
Thus the for the reaction is 5.55