Answer:
2812.6 g of H₂SO₄
Explanation:
From the question given above, the following data were obtained:
Mole of H₂SO₄ = 28.7 moles
Mass of H₂SO₄ =?
Next, we shall determine the molar mass of H₂SO₄. This can be obtained as follow:
Molar mass of H₂SO₄ = (1×2) + 32 + (16×4)
= 2 + 32 + 64
= 98 g/mol
Finally, we shall determine the mass of H₂SO₄. This can be obtained as follow:
Mole of H₂SO₄ = 28.7 moles
Molar mass of H₂SO₄ =
Mass of H₂SO₄ =?
Mole = mass / Molar mass
28.7 = Mass of H₂SO₄ / 98
Cross multiply
Mass of H₂SO₄ = 28.7 × 98
Mass of H₂SO₄ = 2812.6 g
Thus, 28.7 mole of H₂SO₄ is equivalent to 2812.6 g of H₂SO₄
<span>Correct answer is:

But how to get there?
Let's start with simple explanation of what exactly is cellular respiration.
Cellular respiration is a multistage biochemical oxidation process of organic substances when prime product is energy (ATP - adenosine triphosphate) and other are released waste products. Cellular respiration takes place even if other metabolic processes are stopped, but cellular respiration may differ in particular organism groups.Some reactions during whole process of cellular respiration are similar in all types of living organisms.
Cellular respiration is prime indication of declining living processes.Only viruses which are on the edge of living organism and chemical particle are not performing cellular respiration.But to the point :P
In cellular respiration all substrates which are in the cell might be organic, but mostly we are using sugar oxidation - glucose in the presence of oxygen. Chemical formula of sugar looks like this:

Oxygen is just

so for now we have just part of the equation:

But what would be on the right hand side?
It's quite simple, remember equation of full combustion? If we want to burn something we need oxygen like in the equation, so the product of this equation would be carbon dioxide, water and of course energy (ATP).Carbon dioxide formula looks like this:

As a reminder water formula:

Full formula would look like that:

But still as you see this equation is unbalanced, after balancing it would like that:

At the end I would like to explain one more thing. Energy which has been released during this process is part of high-energy connection which might be used to perform chemical reactions in the cell or to move organism for example in muscles. We need to remember that production of ATP is not happening with 100% efficiency and part of this energy is released as heat.</span>
Answer:
4 moles of water
Explanation:
this is a combustion reaction, so the balanced equation is: 2C2H6 + 7O2 → 4CO2 + 6H2O.
the molar mass of C2H6 is 30.07g, so 40.0 g of C2H6 is 1.33 moles of C2H6.
mole ratio of H2O to C2H6 is 6/2, or 3.
1.33 moles C2H6 * 3 moles H2O/1 mole C2H6 = 4 moles H2O
Answer:
0.00369 moles of HCl react with carbonate.
Explanation:
Number of moles of HCl present initially =
moles = 0.00600 moles
Neutralization reaction (back titration): 
According to above equation, 1 mol of NaOH reacts with 1 mol of 1 mol of HCl.
So, excess number of moles of HCl present = number of NaOH added for back titration =
moles = 0.00231 moles
So, mole of HCl reacts with carbonate = (Number of moles of HCl present initially) - (excess number of moles of HCl present) = (0.00600 - 0.00231) moles = 0.00369 moles
Hence, 0.00369 moles of HCl react with carbonate.
Electric current is the flow of electrons in a wire. ... They are no longer firmly held by a specific atom, but instead they can move freely through the lattice of positive metal ions