Answer:
(C) Only if it starts moving
Explanation:
We know that work done is given by

So there are two case in which work done is zero
First case is that when force and displacement are perpendicular to each other
And other case is that when there is no displacement
So for work to be done there must have displacement, if there is no displacement then there is no work done
So option (c) will be the correct option
The total distance is 70km.
The total time is 60 minutes or 1 hour.
Speed=Distance÷Time
=70÷1
=70km/h
Answer:
k = 6,547 N / m
Explanation:
This laboratory experiment is a simple harmonic motion experiment, where the angular velocity of the oscillation is
w = √ (k / m)
angular velocity and rel period are related
w = 2π / T
substitution
T = 2π √(m / K)
in Experimental measurements give us the following data
m (g) A (cm) t (s) T (s)
100 6.5 7.8 0.78
150 5.5 9.8 0.98
200 6.0 10.9 1.09
250 3.5 12.4 1.24
we look for the period that is the time it takes to give a series of oscillations, the results are in the last column
T = t / 10
To find the spring constant we linearize the equation
T² = (4π²/K) m
therefore we see that if we make a graph of T² against the mass, we obtain a line, whose slope is
m ’= 4π² / k
where m’ is the slope
k = 4π² / m'
the equation of the line of the attached graph is
T² = 0.00603 m + 0.0183
therefore the slope
m ’= 0.00603 s²/g
we calculate
k = 4 π² / 0.00603
k = 6547 g / s²
we reduce the mass to the SI system
k = 6547 g / s² (1kg / 1000 g)
k = 6,547 kg / s² =
k = 6,547 N / m
let's reduce the uniqueness
[N / m] = [(kg m / s²) m] = [kg / s²]
Absolute, Atmospheric, Differential, and Gauge Pressure
I would think <em>B,</em> along the Amazon River. This is because of the warm climate ad lots of rainfall.