The answer is B. Enzymes.
Enzymes are biological catalysts that help cause reactions in your body.
Answer:
the correct option is : If body fluids are too acidic, carbonic acid is excreted through the respiratory system in the form of carbon dioxide and water.
Explanation:
Metabolic acidosis is compensated by two systems, the renal and respiratory systems.
In the case of the respiratory system, the mechanism it uses to compensate for this phenomenon is to release the carbonic acid molecule dissociated into its components, that is, in the form of water and carbon dioxide.
The greater the acidosis, the more hyperventilation the person will have, and this is because they seek to eliminate carbonic acid more efficiently and quickly, along with renal excision.
The metabolic acidosis generated by carbonic acid is lethal, since the proteins in our body are denatured and the homeostasis of all systems is corrupted.
The answer would be 2+ since the atomic number represents how many protons are in the element. In this case, there are 16 protons, but only 14 electrons, which means there are an additional 2 protons, hence the 2+ charge on the ion.
Answer:
Father - Mother
Sperm - Egg and those fertilized are called a Zygote
Explanation:
This is a incomplete question. The complete question is:
It takes 348 kJ/mol to break a carbon-carbon single bond. Calculate the maximum wavelength of light for which a carbon-carbon single bond could be broken by absorbing a single photon. Round your answer to correct number of significant digits
Answer: 344 nm
Explanation:
E= energy = 348kJ= 348000 J (1kJ=1000J)
N = avogadro's number = 
h = Planck's constant = 
c = speed of light = 

Thus the maximum wavelength of light for which a carbon-carbon single bond could be broken by absorbing a single photon is 344 nm