The specific heat of mercury is 149.4 J/(kgK)
Explanation:
When a substance is supplied with an amount of energy Q, its temperature increases according to the equation:

where
is the increase in temperature
m is the mass of the sample
is its specific heat capacity
For the sample of mercury in this problem we have
Q = 275 J
m = 0.450 kg

Therefore, by re-arranging the equation we find the mercury's specific heat:

Learn more about specific heat capacity:
brainly.com/question/3032746
brainly.com/question/4759369
#LearnwithBrainly
Answer:
<h2>3,2 oky na dekh Lena ek bar</h2><h2>2,5</h2>
Answer:
egrfeirugherhgourehgabgwehgoehborghrewuhgelkg
Explanation:
Air blows from one place to another because gases move from high-pressure areas to low-pressure areas
In simple words
it happens because of pressure differences.
Answer:
D. Both occur between objects independently whether they are in contact or not.
Explanation:
- The gravitational force is a force that is exerted between two (or more) objects having mass. This force is always attractive and its magnitude is given by

where G is the gravitational constant, m1 and m2 are the two masses, and r is the distance between the two masses.
- The electrical force is a force that is exerted between two (or more) objects having electrical charge. It can be either attractive or repulsive, depending on the sign of the two charges, and its magnitude is given by

where k is the Coulomb's constant, q1 and q2 are the two charges, and r the distance between the two charges.
Looking at both formulas, we see that the two forces are present even when the two objects are not in contact with each other (in fact, r can assume any value in the formula). They are said to be non-contact forces. Therefore, the correct option is
D. Both occur between objects independently whether they are in contact or not.