Answer:
F₁ = 4.29 x 10⁵ N
Explanation:
The total force required to move the freight train with the given acceleration is given by the following formula:
F = ma + f
where,
F = Total Force Required from both engines = ?
m = equivalent mass of system = 2(8 x 10⁵ kg) + 5.5 x 10⁵ kg = 21.5 x 10⁵ kg
a = required acceleration = 5 x 10⁻² m/s²
f = force of friction = 7.5 x 10⁵ N
Therefore,
F = (21.5 x 10⁵ kg)(0.05 m/s²) + 7.5 x 10⁵ N
F = 8.575 x 10⁵ N
Now, for identical forces in each engine can be given as:
Force exerted by each engine = F₁ = F/2
F₁ = 8.575 x 10⁵ N/2
<u>F₁ = 4.29 x 10⁵ N</u>
Answer
given,
Length of the string, L = 2 m
speed of the wave , v = 50 m/s
string is stretched between two string
For the waves the nodes must be between the strings
the wavelength is given by

where n is the number of antinodes; n = 1,2,3,...
the frequency expression is given by

now, wavelength calculation
n = 1

λ₁ = 4 m
n = 2

λ₂ = 2 m
n =3

λ₃ = 1.333 m
now, frequency calculation
n = 1


f₁ = 12.5 Hz
n = 2


f₂= 25 Hz
n = 3


f₃ = 37.5 Hz
Answer:
c quarks nuenuertons d protonsa
Density = 3/5 = 0.6g/cm^3. Since the density is less than the density of water, which is 1, the object will float.
7) 6, i believe, (Cu) 1 atom+ (S) 1 atom+(0)4 atoms.