Answer:243joules
Explanation:
Mass(m)=54kg
Velocity(v)=3m/s
Kinetic energy =(m x v^2)/2
Kinetic energy =(54 x 3^2)/2
Kinetic energy =(54 x 9)/2
Kinetic energy =486/2
Kinetic energy =243joules
Half the potential difference of the the1-µF
A circuit must have a capacitance of 2 F across a 1 kV potential difference for an electrical technician. He has access to a sizable number of 1F capacitors, each of which can sustain a potential difference of no more than 400 V. Please suggest a configuration that uses the fewest capacitors possible.
The 2-mu F capacitor has the following characteristics: none of the aforementioned; half the charge of the 1-mu F capacitor; twice the charge of the 1-mu F capacitor; and half the potential difference of the 1-mu F capacitor.
Q = C V, C = Capacitance of the capacitor gives the charge stored by a capacitor with an applied voltage V. V is the applied voltage.
Learn more about capacitor brainly.com/question/21851402
#SPJ4
Answer:
The distance the log has moved by the time Ernie reaches Bur is 1.33 m.
Explanation:
give information:
The log is 3.0 m long and has mass 20.0 kg.
Burt has mass 30.0 kg; Ernie has mass 40.0 kg
Ernie has mass 40.0 kg.
to find the distance, first, we have to calculate the center of mass
X = ∑ m x /∑m
= (20 x (3/2)) + (30 x 0) + (40 x 3)/ (20+30+40)
= 150/90
= 5/3
when Ernie walk, the center of the mass is
X = (70 x 0) + (20 x (3/2))/(70 + 20)
= 30/90
= 1/3
the distance of log moved = 5/3 - 4/3 = 1.33 m
Answer:
2 seconds
Explanation:
The function of height is given in form of time. For maximum height, we need to use the concept of maxima and minima of differentiation.

Differentiate with respect to t on both the sides, we get

For maxima and minima, put the value of dh / dt is equal to zero. we get
- 32 t + 64 = 0
t = 2 second
Thus, the arrow reaches at maximum height after 2 seconds.
Answer:
a) 
For this case we know the following values:




So then if we replace we got:

b) 
With 
And replacing we have:

And then the scattered wavelength is given by:

And the energy of the scattered photon is given by:

c) 
Explanation
Part a
For this case we can use the Compton shift equation given by:
For this case we know the following values:
So then if we replace we got:
Part b
For this cas we can calculate the wavelength of the phton with this formula:
With
And replacing we have:
And then the scattered wavelength is given by:
And the energy of the scattered photon is given by:
Part c
For this case we know that all the neergy lost by the photon neds to go into the recoiling electron so then we have this: