Answer:
0 m/s
Explanation:
Relative speed is defined as the speed of an object with respect with another object.
In other words, it is the speed of an object as viewed from the frame of reference of another object.
When two objects are moving in the same direction, their relative velocity is given as:

where
velocity of first object
velocity of second object
In the case of the two cars,
22 m/s
Therefore:

Their relative velocity is 0 m/s.
Answer:
<h2>
<u>Joule</u><u>:</u></h2>
1 Joule of work is said to be done when a force of 1 Newton is applied to move/displace a body by 1 metre.
1 Joule= 1 Newton × 1 metre
1 Newton is the amount of force required to accelerate body of mass 1 kg by 1m/s²
So units of N is kgm/s²
So,
1 Joule
=1kgm/s² × m
=1kgm²/s²
<h2><u>Erg</u><u>:</u></h2>
1 erg is the amount of work done by a force of 1 dyne exerted for a distance of one centimetre.
1 Erg =1 Dyne × 1 cm
1 dyne is the force required to cause a mass of 1 gram to accelerate at a rate of 1cm/s².
1 Erg=1 gmcm/s² × cm
1 Erg=1 gmcm/s² × cm=1gmcm²/s²
this is what you need to convert 1gmcm²/s² to 1kgm²/s²
<h3><u>
what you need to know for conversion</u></h3>
[1gm=0.001kg
1cm²
=1cm ×1cm
=0.01 m × 0.01 m
=0.0001m²
second remains constant
]
So,
1gmcm²/s²
=0.001kg×0.0001m²/s²
=0.001kg×0.0001m²/s² =0.0000001kgm²/s²
Hence,
<h3>
<u>1 Erg</u><u>=</u><u>0.0000001</u><u> </u><u>Joule</u></h3><h3>
<u>1</u><u> </u><u>Joule</u><u>=</u><u>1</u><u>0</u><u>,</u><u>0</u><u>0</u><u>0</u><u>,</u><u>0</u><u>0</u><u>0</u><u> </u><u>Erg</u></h3>
<h2>⇒15 J=15×10000000 Erg</h2><h2> =150000000 Erg</h2><h2>
=1.5×10⁶ Erg</h2>
Hello,
I think that A is the right one.
Back emf is 85.9 V.
<u>Explanation:</u>
Given-
Resistance, R = 3.75Ω
Current, I = 9.1 A
Supply Voltage, V = 120 V
Back emf = ?
Assumption - There is no effects of inductance.
A motor will have a back emf that opposes the supply voltage, as the motor speeds up the back emf increases and has the effect that the difference between the supply voltage and the back emf is what causes the current to flow through the armature resistance.
So if 9.1 A flows through the resistance of 3.75Ω then by Ohms law,
The voltage across the resistance would be
v = I x R
= 9.1 x 3.75
= 34.125 volts
We know,
supply voltage = back emf + voltage across the resistance
By plugging in the values,
120 V = back emf + 34.125 V
Back emf = 120 - 34.125
= 85.9 Volts
Therefore, back emf is 85.9 V.
Answer:
a. A dissipative interaction permits a two-way conversion between kinetic and potential energies.
FALSE
in dissipative type of forces energy is not conserved so it is not possible
b. A nondissipative interaction permits a two-way conversion between kinetic and potential energies.
TRUE
in non dissipative type of force there is no energy loss so we can use energy conservation
c. A potential energy function can be specified for a dissipative interaction.
FALSE
Here potential energy is not defined for dissipative type of forces
d. A potential energy function can be specified for a nondissipative interaction.
TRUE
negative gradient of potential energy is equal to non dissipative type of forces
