Explanation:
After some time t the current does not passing through the circuit
=>so the back emf is zero
=>here the inductor opposes decay of the circuit
- Ldi/dt = Ri
di/dt = - R/Li
di/i = - R/Ldt
now we applying the integration on both sides
log i=-R/Lt+C
here t=0=>i=io
Log io=C
=>Log i=-R/L*t + Log io
logi-Log io=-R/L*t
Log[i/io]=-R/L*t
i/io=e^-Rt/L
i=ioe^-Rt/L
the option D is correct
The absorption spectrum would have all the wavelengths of the light source but would have black lines where the two red and one orange lines were in the emission spectrum
Answer:

Explanation:
<u>Motion With Constant Acceleration
</u>
It's a type of motion in which the velocity of an object changes uniformly over time.
The equation that describes the change of velocities is:

Where:
a = acceleration
vo = initial speed
vf = final speed
t = time
Solving the equation for a:

The ball starts at rest (vo=0) and rolls down an inclined plane that makes it reach a speed of vf=7.5 m/s in t=3 seconds.
The acceleration is:


The density of an object can be calculated using the formula Density = Mass/Volume.
Experimental Density:
Density = 153.8g / 20.00 cm^3
Density = 7.69g/cm^3
Percent error equation:
% Error = | Theoretical Value - Experimental Value|/Theoretical Value * 100
% Error = | 7.87g/cm^3 - 7.69g/cm^3|/7.87g/cm^3 * 100
% Error = 2.29%
Therefore a is the correct answer.