Electromagnetic wave bc I studied that early in the year
Answer:

Explanation:
First of all, we need to calculate the total energy supplied to the calorimeter.
We know that:
V = 3.6 V is the voltage applied
I = 2.6 A is the current
So, the power delivered is

Then, this power is delivered for a time of
t = 350 s
Therefore, the energy supplied is

Finally, the change in temperature of an object is related to the energy supplied by

where in this problem:
E = 3276 J is the energy supplied
C is the heat capacity of the object
is the change in temperature
Solving for C, we find:

Answer:
0 - 60 mph = 0 - 26.8 m/s = 0 - 96.6 km/h; 0 - 100 km/h = 0 - 27.8 m/s = 0 - 62.1 mph.
Explanation:
It's the angle made by the incident ray when it's perpendicular to the surface. (Perpendicular lines are the lines that form a graph or like a 90-degree angle)
Given the Hubble's constant, the approximate age of the universe is 5.88 × 10⁹ Years.
Given the data in the question;
Hubble's constant; 
Age of the universe; 
We know that, the reciprocal of the Hubble's constant (
) gives an estimate of the age of the universe (
). It is expressed as:

Now,
Hubble's constant; 
We know that;

so
![1\ Million\ light\ years = [9.46 * 10^{15}m] * 10^6 = 9.46 * 10^{21}m](https://tex.z-dn.net/?f=1%5C%20Million%5C%20light%5C%20years%20%3D%20%5B9.46%20%2A%2010%5E%7B15%7Dm%5D%20%2A%2010%5E6%20%3D%209.46%20%2A%2010%5E%7B21%7Dm)
Therefore;

Now, we input this Hubble's constant value into our equation;

Therefore, given the Hubble's constant, the approximate age of the universe is 5.88 × 10⁹ Years.
Learn more: brainly.com/question/14019680