Answer:
- last option: none of<u> the above.</u>
Explanation:
Describing a solution as<em> concentrated</em> tells that the solution has a relative large concentration, but it is a qualitative description, not a quantitative one, so this does not tell really how concentrated the solution is. This is, the term concentrated is a kind of vague; it just lets you know that the solution is not very diluted, but, as said initially, that there is a relative large amount (concentration) of solute.
One conclusion, of course, is that <u>the solute is soluble</u>: else the solution were not concentrated.
On the other hand, the terms saturated and <em>supersaturated</em> to define a solution are specific.
A saturated solution has all the solute that certain amount of solvent can contain, at a given temperature. A <u>supersaturated solution has more solute dissolved than the saturated solution</u> at the same temperature; superstaturation is a very unstable condition.
From above, there is no way that you can conclude whether a solution is supersaturated or not from the statement that a solution is concentrated, so the answer is<u> none of the above</u>.
Answer: It is the first one. First: 3 upper C u right arrow 3 Upper C u superscript 2 plus, plus 6 e superscript minus. Second: 2 upper N superscript 5 plus, plus 6 e superscript minus right arrow 2 upper N superscript 2 plus.
Explanation:
Correct
Answer:
(D) chlorine has a greater ionization energy than sodium
Explanation:
Sodium is the element of the group 1 and period 3 which means that the valence electronic configuration is
.
Chlorine is the element of the group 17 and period 3 which means that the valence electronic configuration is
.
Ionization energy is the minimum amount of energy which is required to knock out the loosely bound valence electron from the isolated gaseous atom.
<u>Thus, removal of one electron in sodium is easy as it will gain noble gas configuration and become stable. But this case does not exist in chlorine and hence, chlorine has a greater ionization energy than sodium.</u>
So,
Sodium is much more apt to exist as a cation than chlorine because chlorine has a greater ionization energy than sodium.