Answer is: <span>negative beta decay.
</span>
Nuclear reaction: ¹⁴C → ¹⁴N + e⁻ + νe (electron antineutrino).
<span>In beta minus decay (atomic number Z is increased
by one, from 6 in carbon to 7 in nitrogen) neutron is converted to a proton and
an electron and an electron antineutrino.
</span><span>Beta decay is radioactive decay in which a beta
ray and a neutrino are emitted from an atomic nucleus.</span>
Question:
What are advantages of using Uranium as an energy source?
Answer(s):
-Small amounts of Uranium generate large amounts of energy
-Uranium occurs in huge reserves
-It has a longer lifetime than other non-renewable sources of energy
-Brainly Answerer
Explanation:
The given reaction is as follows.

Hence, number of moles of NaOH are as follows.
n = 
= 0.005 mol
After the addition of 25 ml of base, the pH of a solution is 3.62. Hence, moles of NaOH is 25 ml base are as follows.
n = 
= 0.0025 mol
According to ICE table,

Initial: 0.005 mol 0.0025 mol 0 0
Change: -0.0025 mol -0.0025 mol +0.0025 mol
Equibm: 0.0025 mol 0 0.0025 mol
Hence, concentrations of HA and NaA are calculated as follows.
[HA] = 
[NaA] = 
![[A^{-}] = [NaA] = \frac{0.0025 mol}{V}](https://tex.z-dn.net/?f=%5BA%5E%7B-%7D%5D%20%3D%20%5BNaA%5D%20%3D%20%5Cfrac%7B0.0025%20mol%7D%7BV%7D)
Now, we will calculate the
value as follows.
pH = 
![pK_{a} = pH - log \frac{[A^{-}]}{[HA]}](https://tex.z-dn.net/?f=pK_%7Ba%7D%20%3D%20pH%20-%20log%20%5Cfrac%7B%5BA%5E%7B-%7D%5D%7D%7B%5BHA%5D%7D)
= 
= 3.42
Thus, we can conclude that
of the weak acid is 3.42.
Explanation:
1) refine the specimen into fine powder 2) place the smallest amount you can see in the capillary tube 3) set the voltage to increase exponentially to 200 below the predicted temperature, then adjust so that the temperature rises to 20 per minute 4) report the temperature at which the liquid first appears and the temperature at which the last crystal disappears.