Answer:
A. 
B. 
C. ΔK
Explanation:
From the exercise we know that the car and the truck are traveling eastward. I'm going to name the car 1 and the truck 2

A. Since the two vehicles become entangled the final mass is:

From linear momentum we got that:




B. The change in velocity of both vehicles are:
For the car

For the truck

C. The change in kinetic energy is:
ΔK=
ΔK=
ΔK
The type of radiation that can penetrate through paper, but not through wood is called beta rays. Beta rays can penetrate paper and air, but a thin piece of alimony can stop it. Gamma can cut through anything except lead and many inches of concrete. Alpha can be stopped by paper and not penetrated. The correct answer is B.
The formula used to find potential energy is <em>P.E. = M * G * H</em> (P.E. is potential energy, M is mass, G is gravitational pull, and H is height). So the answer to your question is <em>5 * 9.8 * 2</em>, which equals 98.
Answer:

Decrease
Explanation:
I = Current = 3.7 A
e = Charge of electron = 
n = Conduction electron density in copper = 
= Drift velocity of electrons
r = Radius = 1.23 mm
Current is given by

The drift speed of the electrons is 

From the equation we can see the following

So, if the number of conduction electrons per atom is higher than that of copper the drift velocity will decrease.
The sum of the kinetic and potential energies of a system of objects is conserved only when no external force acts on the objects.
<h3>
Conservation of mechanical energy</h3>
The principle of conservation of mechanical energy states that the total mechanical energy of an isolated system (absence of external force) is always constant.
M.A = P.E + K.E
where;
P.E is potential energy
K.E is kinetic energy
Thus, the sum of the kinetic and potential energies of a system of objects is conserved only when no external force acts on the objects.
Learn more about conservation of mechanical energy here: brainly.com/question/24443465