Average speed = (distance covered) / (time to cover the distance)
Tissa covered 60 meters in 10 seconds. Her average speed was
(60 m) / (10 sec) = 6 m/s.
That's the slope of the dotted line.
Lilly covered 60 meters in 8 seconds. Her average speed was
(60 m) / (8 sec) = 7.5 m/s .
That's the slope of the solid line.
Lilly covered the same distance in less time, and both girls
arrived at the finish line together. Technically, in science talk,
we would say that Lilly ran "faster", and her average speed
was "greater".
We can detect that by looking at the graph, because Lilly's line
has the characteristic of being "steeper", and we know that the
slope of the line on a distance/time graph is "speed".
Answer:
hi what is your question?? say in English please
The mechanical work done by the sprinter during this time will be 4537.5 J , the average power the sprinter must generate will be 907.5 W and if the sprinter converts food energy to mechanical energy with an efficiency of 25% then he will be burning calories at 54.20 calories per second.
Work in physics is the energy that is transferred to or from an item when a force is applied along a displacement. It is frequently described in its most basic form as the result of force and displacement.
The quantity of energy moved or transformed per unit of time is known as power in physics. The watt, or one joule per second, is the unit of power in the International System of Units.. A scalar quantity is power.
Given 75-kg sprinter accelerates from rest to a speed of 11.0 m/s in 5.0 s.
So let,
m = 75 kg
v = 11.0 m/s
t = 5.0 s
So the mechanical work done by the sprinter during this time will be as follow:
W = 0.5 mv²
W = 0.5 (75)(11)²
W = 4537.5 J
The average power the sprinter must generate will be as follow:
Power(P) = W / t
P = 4537.5/5
P = 907.5 W
Only 25% is absorbed. So, the sprinter only absorbed 226.875 J per second which is equal to 54.20 calories per second.
Hence mechanical work done by the sprinter during this time will be 4537.5 J , the average power the sprinter must generate will be 907.5 W and if the sprinter converts food energy to mechanical energy with an efficiency of 25% then he will be burning calories at 54.20 calories per second.
Learn more about mechanical power here:
brainly.com/question/25573309
#SPJ10
The best type of electromagnetic wave to use to warm food that is safe would be the infrared wave. The correct answer is B.
The answer is 1.33 i hope this helps you