Another way to test your question is to build your own miniature buildings. Depending on how in-depth you go, building could get a little pricey, but if you keep it basic there shouldn't be a problem. Decide on a certain number of foundations to test [maybe 3 or so] and try simulating an earthquake.
<span>Hope this helps! </span>
Answer:
665 ft
Explanation:
Let d be the distance from the person to the monument. Note that d is perpendicular to the monument and would make 2 triangles with the monuments, 1 up and 1 down.
The side length of the up right-triangle knowing the other side is d and the angle of elevation is 13 degrees is

Similarly, the side length of the down right-triangle knowing the other side is d and the angle of depression is 4 degrees

Since the 2 sides length above make up the 200 foot monument, their total length is
0.231d + 0.07d = 200
0.301 d = 200
d = 200 / 0.301 = 665 ft
A "heating curve" is a graph that shows the temperature of the substance
against the amount of heat you put into it.
For most of the graph, as you'd expect, the temperature goes up as you
add heat, and it goes down as you take heat away. BUT ... While the
substance is changing state, its temperature doesn't change even though
you're putting heat in or taking heat out.
So that part of the graph is a horizontal line.
Answer:
a. b- x= y
dx = -dy
b. F = 
c. F = 
Explanation:
a. x components:

= 
Integrating and solving gives:
b- x= y
dx = -dy
b. the force is given by the equation derived from (a.):
F = 
c. Given that r>>a, the expression becomes:
F = 
Explanation:
When the size of the charge distribution is less than the distance to the deviation point of the charge then the charge distribution would produce the same effect such as a linear charge.