Answer:
Magnetic field at point having a distance of 2 cm from wire is 6.99 x 10⁻⁶ T
Explanation:
Magnetic field due to finite straight wire at a point perpendicular to the wire is given by the relation :
......(1)
Here I is current in the wire, L is the length of the wire, R is the distance of the point from the wire and μ₀ is vacuum permeability constant.
In this problem,
Current, I = 0.7 A
Length of wire, L = 0.62 m
Distance of point from wire, R = 2 cm = 2 x 10⁻² m = 0.02 m
Vacuum permeability, μ₀ = 4π x 10⁻⁷ H/m
Substitute these values in equation (1).

B = 6.99 x 10⁻⁶ T
Your answer can be either 92 900 000 or 9.29e+7
To solve this problem it is necessary to apply the concepts related to the Stefan-Boltzmann law which establishes that a black body emits thermal radiation with a total hemispheric emissive power (W / m²) proportional to the fourth power of its temperature.
Heat flow is obtained as follows:

Where,
F =View Factor
A = Cross sectional Area
Stefan-Boltzmann constant
T= Temperature
Our values are given as
D = 0.6m

The view factor between two coaxial parallel disks would be


Then the view factor between base to top surface of the cylinder becomes
. From the summation rule


Then the net rate of radiation heat transfer from the disks to the environment is calculated as





Therefore the rate heat radiation is 780.76W
Answer:
In the first law, an object will not change its motion unless a force acts on it. In the second law, the force on an object is equal to its mass times its acceleration. In the third law, when two objects interact, they apply forces to each other of equal magnitude and opposite direction.
Explanation: