Ionic bonds with electrostatic attractions
Answer:
(a) 490 N on earth
(b) 80 N on earth
(c) 45.4545 kg on earth
(d) 270.27 kg on moon
Explanation:
We have given 1 kg = 9.8 N = 2.2 lbs on earth
And 1 kg = 1.6 N = 0.37 lbs on moon
(a) We have given mass of the person m = 50 kg
As it is given that 1 kg = 9.8 N
So 50 kg = 50×9.8 =490 N
(b) Mass of the person on moon = 50 kg
As it is given that on moon 1 kg = 1.6 N
So 50 kg = 50×1.6 = 80 N
(c) We have given that weight of the person on the earth = 100 lbs
As it is given that 1 kg = 2.2 lbs on earth
So 100 lbs = 45.4545 kg
(d) We have given weight of the person on moon = 100 lbs
As it is given that 1 kg = 0.37 lbs
So 100 lbs 
Answer:
Berries is the correct answer because it is the produce in your pyramid and as each living thing is devoured by another there is less energy. For instance the berry has the most energy because it’s energy has just come from the sun. But then an insect eats it and consumes most of its energy but some energy is released into the atmosphere. Then a rodent eats the bug and consumes its energy but yet again some energy is released into the atmosphere. So each time there is less and less energy. Does that help any?
Explanation:
it’s energy has just come from the sun. But then an insect eats it and consumes most of its energy but some energy is released into the atmosphere.
The answer would be slowly
Answer:
H = 1/2 g t^2 where t is time to fall a height H
H = 1/8 g T^2 where T is total time in air (2 t = T)
R = V T cos θ horizontal range
3/4 g T^2 = V T cos θ 6 H = R given in problem
cos θ = 3 g T / (4 V) (I)
Now t = V sin θ / g time for projectile to fall from max height
T = 2 V sin θ / g
T / V = 2 sin θ / g
cos θ = 3 g / 4 (T / V) from (I)
cos θ = 3 g / 4 * 2 sin V / g = 6 / 4 sin θ
tan θ = 2/3
θ = 33.7 deg
As a check- let V = 100 m/s
Vx = 100 cos 33.7 = 83,2
Vy = 100 sin 33,7 = 55.5
T = 2 * 55.5 / 9.8 = 11.3 sec
H = 1/2 * 9.8 * (11.3 / 2)^2 = 156
R = 83.2 * 11.3 = 932
R / H = 932 / 156 = 5.97 6 within rounding