Infrared waves. The other 3 would hurt you because they are below the UV scale of 400 nanometers. Infrared is light that wouldn't harm you
Answer:
DMs are not accessible anymore. I assume Zuka is a staff member? the only way to talk to a staff member anymore is to report something, but even then, the probably won't even look at what they're deleting :/
May I have brainliest please? :)
Answer:
It is very important because scientists, especially the ones with empirical experiments and results, are prone to error and the empirical data is in need to be under strict observation done not only by many scientists but also by expermiented ones. This guards everybody to change the parameters suddenly which can affect the real results of an experiment
Explanation:
Answer:
a) 2.87 m/s
b) 3.23 m/s
Explanation:
The avergare velocity can be found dividing the length traveled d by the total time t.
a)
For the first part we easily know the total traveled length which is:
d = 50.2 m + 50.2 m = 100.4 m
The time can be found dividing the distance by the velocity:
t1 = 50.2 m / 2.21 m/s = 22.7149 s
t2 = 50.2 m / 4.11 m/s = 12.2141 s
t = t1 +t2 = 34.9290 s
Therefore, the average velocity is:
v = d/t =2.87 m/s
b)
Here we can easily know the total time:
t = 1 min + 1.16 min = 129.6 s
Now the distance wil be found multiplying each velocity by the time it has travelled:
d1 = 2.21 m/s * 60 s = 132.6 m
d2 = 4.11 m/s *(1.16 * 60 s) = 286.056 m
d = 418.656 m
Therefore, the average velocity is:
v = d/t =3.23 m/s
Answer:
the kinetic energy lost due to friction is 22.5 J
Explanation:
Given;
mass of the block, m = 0.2 kg
initial velocity of the block, u = 25 m/s
final velocity of the block, v = 20 m/s
The kinetic energy lost due to friction is calculated as;

Therefore, the kinetic energy lost due to friction is 22.5 J