Answer:
The type of mechanical energy that is possessed due to the virtue of motion or state of a body is known as potential energy.
Its formula: PE= mgh
Its SI unit is joule.
Hope it helps you..
Answer : When we increase the temperature of an exothermic reaction the equilibrium will shift to the left direction i.e, towards the reactant.
Explanation :
Le-Chatelier's principle : This principle states that if any change in the variables of the reaction, the equilibrium will shift in the direction to minimize the effect.
As the given reaction is an exothermic reaction in which the heat is released during a chemical reaction. That means the temperature is decreased on the reactant side.
For an exothermic reaction, heat is released during a chemical reaction and is written on the product side.

If the temperature is increases in the equilibrium then the equilibrium will shift in the direction where, temperature is getting decreased. Thus, the reaction will shift to the left direction i.e, towards the reactant.
Hence, when we increase the temperature of an exothermic reaction the equilibrium will shift to the left direction i.e, towards the reactant.
Without being provided a list of items, I would have to generally say that everything around you is matter. There are a few exceptions to this list, but a general rule of thumb is anything you can touch, taste, smell or hold would be considered matter. Sound, light, time (Dr. Who may disagree) and heat would be considered non-matter items.
Answer:
-6.49 m/s
Explanation:
This is doppler effect.
The equation is;
F_l = [(v + v_l)/(v + v_s)]F_s
Where;
F_l is frequency observed by the listener
v is speed of sound
v_l is speed of listener
v_s is speed of source of the sound
F_s is frequency of the source of the sound
In this question, the source of the sound is the moving vehicle.
Thus;
F_l = F_beat + F_s
We are given beat frequency (f_beat) as 5 Hz while source frequency (F_s) as 260 Hz.
So,
F_l = 5 + 260
F_l = 265 Hz
Since listener is sitting by car, thus; v_l = 0 m/s
Thus,from our doppler effect equation, let's make v_s the subject;
v_s = F_s[(v + v_l)/F_l] - v
Speed of sound has a value of v = 344 m/s
Thus;
v_s = 260[(344 + 0)/265] - 344
v_s = -6.49 m/s
This value is negative because the source is moving towards the listener