Answer:
Explanation:
The python code to generate this is quite simple to run.
i hope you understand everything written here, you can as well try out other problems to understand better.
First to begin, we import the package;
Code:
import pandas as pd
import matplotlib.pyplot as plt
name = input('Enter name of the file: ')
op = input('Enter name of output file: ')
df = pd.read_csv(name)
df['Date'] = pd.to_datetime(df["Date"].apply(str))
plt.plot(df['Date'],df['Absent']/(df['Present']+df['Absent']+df['Released']),label="% Absent")
plt.legend(loc="upper right")
plt.xticks(rotation=20)
plt.savefig(op)
plt.show()
This should generate the data(plot) as seen in the uploaded screenshot.
thanks i hope this helps!!!
Answer:
fluid nozzle that is too large
Answer:
(a) 120 kW
(b) 800 kW
Explanation:
Given:
diameter: 1.5 m
length = 22 m
U = 5 m/s
temperature = 20°C
For water at 20°C, take ρ = 998 kg/m³ and µ = 0.001 kg/m⋅s
To find:
power in kW
(a) if the cylinder is parallel
Length / Diameter = L / D = 22 / 1.5 = 14.6 = 15
Re(L) = ρ*U*L / µ = 998 * 5 * 22 / 0.001 = 109780000 = 1.1E8
C(D.Frontal) ≈ 1.1
Force = F = 1.1 * ρ/2 * U² * π / 4 * D
= 1.1 (998 / 2) (5)²(π / 4)(1.5)²
= 1.1 * 499 * 25 * 0.785 * 2.25
= 24000 N
Power = Force * Displacement / time
= F * U
= 24000 * 5
= 120000
Power = 120 kW
b) if the cylinder is normal to the tow direction.
Re(L) = ρ*U*D / µ = 998 * 5 * 1.5 / 0.001 = 7485000 = 7.5E6
C(D.Frontal) ≈ 0.4
Force = F = 0.4 * ρ/2 * U² * D * L
= 0.4 (998 / 2) (5)²(1.5)(22)
= 164670 ≈ 165000
Power = Force * Displacement / time
= F * U
= 165000 * 5 = 825000
≈ 800 kW
Power = 800 kW
Answer:
The percentage ductility is 35.5%.
Explanation:
Ductility is the ability of being deform under applied load. Ductility can measure by percentage elongation and percentage reduction in area. Here, percentage reduction in area method is taken to measure the ductility.
Step1
Given:
Diameter of shaft is 10.2 mm.
Final area of the shaft is 52.7 mm².
Calculation:
Step2
Initial area is calculated as follows:


A = 81.713 mm².
Step3
Percentage ductility is calculated as follows:


D = 35.5%.
Thus, the percentage ductility is 35.5%.