Answer:
The answer is "Option A".
Explanation:
Series:

Solving the above series:

So, the series is: 
Answer: The overhead percentage is 7.7%.
Explanation:
We call overhead, to all those bytes that are delivered to the physical layer, that don't carry real data.
We are told that we have 700 bytes of application data, so all the other bytes are simply overhead, i.e. , 58 bytes composed by the transport layer header, the network layer header, the 14 byte header at the data link layer and the 4 byte trailer at the data link layer.
So, in order to assess the overhead percentage, we divide the overhead bytes between the total quantity of bytes sent to the physical layer, as follows:
OH % = (58 / 758) * 100 = 7.7 %
Answer:
See explaination
Explanation:
The Fourier transform of y(t) = x(t - to) is Y(w) = e- jwto X(w) . Therefore the magnitude spectrum of y(t) is given by
|Y(w)| = |X(w)|
The phase spectrum of y(t) is given by
<Y(w) = -wto + <X(w)
please kindly see attachment for the step by step solution of the given problem.
Explanation:
The correct answers to the fill in the blanks would be;
1. Viscoelastic stress relaxation refers to scenarios for which the stress applied to a polymer must decay over time in order to maintain a constant strain. Otherwise, over time, the polymer chains will slip and slide past one another in response to a constant applied load and the strain will increase (in magnitude).
2. Viscoelastic creep refers to scenarios for which a polymer will permanently flow over time in response a constant applied stress.
The polymer whose properties have been mentioned above is commonly known as Kevlar.
It is mostly used in high-strength fabrics and its properties are because of several hydrogen bonds between polymer molecules.
Answer:
Most hydraulic systems develops pressure surges that may surpass settings valve. by exposing the hose surge to pressure above the maximum operating pressure will shorten the hose life.
Explanation:
Solution
Almost all hydraulic systems creates pressure surges that may exceed relief valve settings. exposing the hose surge to pressure above the maximum operating pressure shortens the hose life.
In systems where pressure peaks are severe, select or pick a hose with higher maximum operating pressure or choose a spiral reinforced hose specifically designed for severe pulsing applications.
Generally, hoses are designed or created to accommodate pressure surges and have operating pressures that is equal to 25% of the hose minimum pressure burst.