Answer:
Dehydration Reaction
Explanation:
Alcohols can be converted into Alkenes using catalytic amounts of acids as a catalysts.
The water molecule is removed hence, it is called as dehydration reaction.
The reaction is attached.
The balanced reaction equation for the reaction between CH₃OH and O₂ is
2CH₃OH(l) + 3O₂(g) → 2CO₂(g) + 4H₂O(l)
Initial moles 12 24
Reacted moles 12 18
Final moles - 6 12 24
The stoichiometric ratio between CH₃OH and O₂ is 2 : 3
Hence,
reacted moles of O₂ = reacted moles of CH₃OH x (3/2)
= 12 mol x 3 / 2
= 18 mol
All of CH₃OH moles react with O₂.
Hence, the limiting agent is CH₃OH.
Excess reagent is O₂.
Amount of moles of excess reagent left = 24 - 18 mol = 6 mol
<u>Given:</u>
Change in internal energy = ΔU = -5084.1 kJ
Change in enthalpy = ΔH = -5074.3 kJ
<u>To determine:</u>
The work done, W
<u>Explanation:</u>
Based on the first law of thermodynamics,
ΔH = ΔU + PΔV
the work done by a gas is given as:
W = -PΔV
Therefore:
ΔH = ΔU - W
W = ΔU-ΔH = -5084.1 -(-5074.3) = -9.8 kJ
Ans: Work done is -9.8 kJ
Answer:
How the incident happened
Any chemicals involved in an incident
Any other hazards present in the lab
Explanation:
Above are the types of information that are necessary to communicate with emergency responders. The emergency responders ask the first question that how the incident happened. After that they ask that is there any harmful chemicals are present in the laboratory or what types of chemicals present in the laboratory. These questions were asked by the emergency responders in order to give the patient a suitable treatment.