Answer:
Boil the water and stir in potassium nitrate. If it doesn't all dissolve, you can cook it on the stove or microwave it until the water boils again. Remove the solution from heat, but let it cool slowly for the best crystal formation.
The mass of NaCl needed for the reaction is 91.61 g
We'll begin by calculating the number of mole of F₂ that reacted.
- Gas constant (R) = 0.0821 atm.L/Kmol
PV = nRT
1.5 × 12 = n × 0.0821 × 280
18 = n × 22.988
Divide both side by 22.988
n = 18 / 22.988
n = 0.783 mole
Next, we shall determine the mole of NaCl needed for the reaction.
F₂ + 2NaCl —> Cl₂ + 2NaF
From the balanced equation above,
1 mole of F₂ reacted with 2 moles of NaCl.
Therefore,
0.783 mole F₂ will react with = 0.783 × 2 = 1.566 moles of NaCl.
Finally, we shall determine the mass of 1.566 moles of NaCl.
- Molar mass of NaCl = 23 + 35.5 = 58.5 g/mol
Mass = mole × molar mass
Mass of NaCl = 1.566 × 58.5
Mass of NaCl = 91.61 g
Therefore, the mass of NaCl needed for the reaction is 91.61 g
Learn more about stiochoimetry: brainly.com/question/25830314
Molar mass of MgCO3 is 84.313 g/mol
You can calculate this from data on the periodic table:
Molar mass Mg = 24.305g/mol
molar mass C = 12.011g/mol
molar mass O = 15.999g/mol mass 3 mol = 47.997g
Total = 84.313g/mol
Mass to be used in 1.2L of 1.5M solution = 84.313g * 1.2L * 1.5mol /L = 151.763g
I have not taken significant figures into account
The balanced equation you provide is not necessary in this calculation
Answer:
Change in internal energy (ΔU) = -9 KJ
Explanation:
Given:
q = –8 kJ [Heat removed]
w = –1 kJ [Work done]
Find:
Change in internal energy (ΔU)
Computation:
Change in internal energy (ΔU) = q + w
Change in internal energy (ΔU) = -8 KJ + (-1 KJ)
Change in internal energy (ΔU) = -8 KJ - 1 KJ
Change in internal energy (ΔU) = -9 KJ
Oxygen, fluorine and iodine are diatomic elements. Flourine is more reactive than the other two because it is the closest away to filling its outer layer of electrons and becoming stable like a noble gas.