Answer and Explanation:
Data provided in the question
Force = 50N
Length = 5mm
diameter = 2.0m = 
Extended by = 0.25mm = 
Based on the above information, the calculation is as follows
a. The Stress of the wire is

here area of circle = perpendicular to the are i.e cross-sectional i.e
= 
= 
Now place these above values to the above formula

= 15.92 MPa
As 1Pa = 1 by N m^2
So,
MPa = 10^6 N m^2
b. Now the strain of the wire is

= 
The period of one full swing depends on the length of the pendulum and on gravity. The period of each full swing would be longer on the moon, with less gravity.
The rotation of the plane of the swings doesn't depend on the length of the string OR on gravity. It only depends on the latitude of the place where the pendulum hangs, and the rotation period of the body it's located on.
On Earth, it's (24 hours)/(sine of latitude).
On the moon, it would be (27.32 days)/(sine of latitude).
Answer:
Acceleration, 
Explanation:
Given that,
The plane is at rest initially, u = 0
Final speed of the plane, v = 72.2 m/s
Time, t = 29 s
We need to find the average acceleration for the plane. It can be calculated as :



So, the average acceleration for the plane is
. Hence, this is the required solution.
Answer:
(1) The orbits are ellipses, with focal points ƒ1 and ƒ2 for the first planet and ƒ1 and ƒ3 for the second planet. The Sun is placed in focal point ƒ1.
(2) The two shaded sectors A1 and A2 have the same surface area and the time for planet 1 to cover segment A1 is equal to the time to cover segment A2.
(3) The total orbit times for planet 1 and planet 2 have a ratio a13/2 : a23/2
Answer:

Explanation:
Given that,
Initially, the spaceship was at rest, u = 0
Final velocity of the spaceship, v = 11 m/s
Distance accelerated by the spaceship, d = 213 m
We need to find the acceleration experienced by the occupants of the spaceship during the launch. It is a concept based on the equation of kinematics. Using the third equation of motion to find acceleration.

So, the acceleration experienced by the occupants of the spaceship is
.