Answer:
11.7 m
Explanation:
I assume north is the y direction and x is the east direction, so Δx refers to the displacement in the east direction.
First, find the time it takes for the velocity to change from directly north to directly east.
Given (in the y direction):
v₀ = 2.88 m/s
v = 0 m/s
a = 0.350 m/s² sin(-52.0°) = -0.276 m/s²
Find: t
v = at + v₀
(0 m/s) = (-0.276 m/s²) t + (2.88 m/s)
t = 10.4 s
Given (in the x direction):
v₀ = 0 m/s
a = 0.350 m/s² cos(-52.0°) = 0.215 m/s²
t = 10.4 s
Find: Δx
Δx = v₀ t + ½ at²
Δx = (0 m/s) (10.4 s) + ½ (0.215 m/s²) (10.4 s)²
Δx = 11.7 m
Answer:
i) E = 269 [MJ] ii)v = 116 [m/s]
Explanation:
This is a problem that encompasses the work and principle of energy conservation.
In this way, we establish the equation for the principle of conservation and energy.
i)

![W_{1-2}= (F*d) - (m*g*h)\\W_{1-2}=(500000*2.5*10^3)-(40000*9.81*2.5*10^3)\\W_{1-2}= 269*10^6[J] or 269 [MJ]](https://tex.z-dn.net/?f=W_%7B1-2%7D%3D%20%28F%2Ad%29%20-%20%28m%2Ag%2Ah%29%5C%5CW_%7B1-2%7D%3D%28500000%2A2.5%2A10%5E3%29-%2840000%2A9.81%2A2.5%2A10%5E3%29%5C%5CW_%7B1-2%7D%3D%20269%2A10%5E6%5BJ%5D%20or%20269%20%5BMJ%5D)
At that point the speed 1 is equal to zero, since the maximum height achieved was 2.5 [km]. So this calculated work corresponds to the energy of the rocket.
Er = 269*10^6[J]
ii ) With the energy calculated at the previous point, we can calculate the speed developed.
![E_{k2}=0.5*m*v^2\\269*10^6=0.5*40000*v^2\\v=\sqrt{\frac{269*10^6}{0.5*40000} }\\ v=116[m/s]](https://tex.z-dn.net/?f=E_%7Bk2%7D%3D0.5%2Am%2Av%5E2%5C%5C269%2A10%5E6%3D0.5%2A40000%2Av%5E2%5C%5Cv%3D%5Csqrt%7B%5Cfrac%7B269%2A10%5E6%7D%7B0.5%2A40000%7D%20%7D%5C%5C%20v%3D116%5Bm%2Fs%5D)
Answer:
250 N
433 N
Explanation:
N = Normal force by the surface of the inclined plane
W = Weight of the block = 500 N
f = static frictional force acting on the block
Parallel to incline, force equation is given as
f = W Sin30
f = (500) Sin30
f = 250 N
Perpendicular to incline force equation is given
N = W Cos30
N = (500) Cos30
N = 433 N