Answer:
c is the one that makes the most sense
Explanation:
Answer:
500J
Explanation:
The arrow will have an energy of 500J after it has been released from its state of rest.
This is compliance with the law of conservation of energy which states that "in every system, energy is neither created nor destroyed but transformed from one form to another".
- The energy at rest which is the potential energy is 500J
- This energy will be converted to kinetic energy in total after the arrow has been released.
- This way, no energy is lost and we can account for the energy transformations occurring.
Answer:
No you can't cuz,if you put water instead of clock oil in Millikan oil drop your experiment will fail and it won't turn out the way you wanted it to be
Resistance = (voltage) / (current)
Resistance = (120 V) / (0.5 A)
<em>Resistance = 240 ohms</em>
<em></em>
Know what ? There might be too much information given in this question. I want to check, because it's possible that it might not even all fit together.
To calculate my answer, I only used the voltage and the current. I didn't use the "60 watts", and I'm curious to know whether it even fits with the given voltage and current.
Power = (voltage) times (current).
Power = (120 V) times (0.5 A)
Power = 60 watts
Well gadzooks and sure enough ! The three numbers given in the question all go together nicely.
And not only THAT !
The answer could have been calculated by using ANY TWO of them.
m = mass of the ice added = ?
M = mass of water = 1.90 kg
= specific heat of the water = 4186 J/(kg ⁰C)
= specific heat of the ice = 2000 J/(kg ⁰C)
= latent heat of fusion of ice to water = 3.35 x 10⁵ J/kg
= initial temperature of ice = 0 ⁰C
= initial temperature of water = 79 ⁰C
T = final equilibrium temperature = 8 ⁰C
using conservation of heat
Heat gained by ice = Heat lost by water
m
(T -
) + m
= M
(
- T)
inserting the values
m (4186) (8 - 0) + m (3.35 x 10⁵ ) = (1.90) (4186) (79 - 8)
m = 1.53 kg