Answer:
D
Explanation:
f = ma
2 x 12 = 24
answer could differ since it's rolling down a ramp. if an angle is given our approach differs.
Answer: D.
Explanation: Orange, at 3 meters per second if you calculate the net force being applied to the system.
hope this helps! ✌
Answer:
2.35 kgm^2
Explanation:
we take length 68.7 cm as x-axis and 47.5 cm as y-axis then the axis about which we have to find out moment of inertia will be z-axis.
moment of inertia about x-axis
kg-m2

by perpendicular axis theorem

Answer:
F_A = 8 F_B
Explanation:
The force exerted by the planet on each moon is given by the law of universal gravitation
F = 
where M is the mass of the planet, m the mass of the moon and r the distance between its centers
let's apply this equation to our case
Moon A
the distance between the planet and the moon A is r and the mass of the moon is 2m
F_A = G \frac{2m M}{r^{2} }
Moon B
F_B = G \frac{m M}{(2r)^{2} }
F_B = G \frac{m M}{4 r^{2} }
the relationship between these forces is
F_B / F_A =
= 1/8
F_A = 8 F_B