Temperature of 62.0 °C is placed in 50.0 mL of H2O initially at 25.0 °C and allowed to reach thermal equilibrium
Answer:-ΔG=-101.5KJ
Explanation:We have to calculate ΔG for the reaction so using the formula given in the equation we can calculate the \Delta G for the reaction.
We need to convert the unit ofΔS in terms of KJ/Kelvin as its value is given in terms of J/Kelvin
Also we need to convert the temperature in Kelvin as it is given in degree celsius.

After calculating forΔG we found that the value ofΔG is negative and its value is -101.74KJ
For a reaction to be spontaneous the value of \Delta G \ must be negative .
As the ΔG for the given reaction is is negative so the reaction will be spontaneous in nature.
In this reaction since the entropy of reaction is positive and hence when we increase the temperature term then the overall term TΔS would become more positive and hence the value of ΔG would be less negative .
Hence the value of ΔG would become more positive with the increase in temperature.
So we found the value of ΔG to be -101.74KJ
Answer:
I know that Aerogel is the lightest metal in existence, but I don't think it would help much with your answer. I mean you can give it a try?
Answer: ya this one
Explanation: this is the one
Answer:
C
Explanation:
This is because matter is anything that has mass and occupies space.Therefore the space occupied by matter is volume