The purpose of an universal indicator is to test wether a solution is acid or if its a base. It changes colors according to the PH's. It helps a lot in the indication of a chemical reaction because it can say if <span>each component loses or gains protons depending upon the acidity or basicity of the solution being tested.An universal indicator can say if a determined solution proves to be endothermic or exothermic. If the solution is not tested as acid or base then we cannot knwo if there will be an endothermic reaction or an exhotermic one</span>
Answer:
Here you go
Explanation:
Avogadro number is 6.023 x 10(23).
A mole of CaCO3 (calcium carbonate) has one mole (Avogadro number) of Ca atoms, one mole of C atoms and 3 moles of O atoms.
i. The dissolution of PbSO₄ in water entails its ionizing into its constituent ions:

---
ii. Given the dissolution of some substance
,
the Ksp, or the solubility product constant, of the preceding equation takes the general form
.
The concentrations of pure solids (like substance A) and liquids are excluded from the equilibrium expression.
So, given our dissociation equation in question i., our Ksp expression would be written as:
.
---
iii. Presumably, what we're being asked for here is the <em>molar </em>solubility of PbSO4 (at the standard 25 °C, as Ksp is temperature dependent). We have all the information needed to calculate the molar solubility. Since the Ksp tells us the ratio of equilibrium concentrations of PbSO4 in solution, we can consider either [Pb2+] or [SO4^2-] as equivalent to our molar solubility (since the concentration of either ion is the extent to which solid PbSO4 will dissociate or dissolve in water).
We know that Ksp = [Pb2+][SO4^2-], and we are given the value of the Ksp of for PbSO4 as 1.3 × 10⁻⁸. Since the molar ratio between the two ions are the same, we can use an equivalent variable to represent both:

So, the molar solubility of PbSO4 is 1.1 × 10⁻⁴ mol/L. The answer is given to two significant figures since the Ksp is given to two significant figures.
Answer:
5000 and
indicate that there is more B than A at equilibrium
Explanation:
For the given reaction: ![K=\frac{[B]}{[A]}](https://tex.z-dn.net/?f=K%3D%5Cfrac%7B%5BB%5D%7D%7B%5BA%5D%7D)
where [B] and [A] represents equilibrium concentration B and A respectively. K represents equilibrium constant
More B than A at equilibrium means, [B] > [A]
So, ![K=\frac{[B]}{[A]}>1](https://tex.z-dn.net/?f=K%3D%5Cfrac%7B%5BB%5D%7D%7B%5BA%5D%7D%3E1)
As, both 5000 and
are greater than 1 therefore these two K values indicate that there is more B than A at equilibrium