Answer:
Explanation:
To convert from grams to atoms, first divide by the molar mass, the multiply by 6.022*10^23.
To convert from moles to mass, multiply by the molar mass of the element.
Hope this helps!
-Emma Victoria
Answer: 6.Explanation:1) Aluminum

So each atom of aluminum lost 3 electrons to pass from 0 oxidation state to 3+ oxidation state.
2) Manganesium

So, each ion of Mn(2+) gained 2 electrons pass from 2+ oxidation state to 0.
3) Balance
Multiply aluminum half-reaction (oxidation) by 2 and multiply manganesium half-raction (reduction) by 3:

4) Net equation
Add the two half-equations:

As you see the left side has 2 Al, 3Mn, and 3*2 positive charges.
The right side has 2 Al, 3 Mn, and 2*3 positive charges.
So, the equation is balanced.
5) Count the number of electrons involved.
As you see 2 atoms of aluminum lost 6 electrons (3 each).
That is the answer to the question. 6 electrons will be lost.
Answer:
Fahrenheit
Explanation:
Bc i said so LOL JKJK ABAHGTRDSED
Answer:
Here's what I get
Explanation:
(a) Intermediates
The three structures below represent one contributor to the resonance-stabilized intermediate, in which the lone pair electrons on the heteroatom are participating (the + charge on the heteroatoms do not show up very well).
(b) Relative Stabilities
The relative stabilities decrease in the order shown.
N is more basic than O, so NH₂ is the best electron donating group (EDG) and will best stabilize the positive charge in the ring. However, the lone pair electrons on the N in acetanilide are also involved in resonance with the carbonyl group, so they are not as available for stabilization of the ring.
(c) Relative reactivities
The relative reactivities would be
C₆H₅-NH₂ > C₆H₅-OCH₃ > C₆H₅-NHCOCH₃
Answer:
<h2>0.62 mL</h2>
Explanation:
The volume of a substance when given the density and mass can be found by using the formula

From the question we have

We have the final answer as
<h3>0.62 mL</h3>
Hope this helps you