Answer:
The following statements are correct.
1. The magnetic force on the current-carrying wire is strongest when the current is perpendicular to the magnetic field lines.
2. The direction of the magnetic force acting on a current-carrying wire in a uniform magnetic field is perpendicular to the direction of the field.
3. The direction of the magnetic force acting on a current-carrying wire in a uniform magnetic field is perpendicular to the direction of the current.
Wrong statements:
1. The magnetic force on the current-carrying wire is strongest when the current is parallel to the magnetic field lines.
Explanation:
Answer:
a) force between them is attraction, b) F = 1.125 10⁻² N
Explanation:
In this case the electric force is given by Coulomb's law
F =
In the exercise they give us the values of the loads
q1 = - 10 mC = -10 10⁻³ C
q2 = 5 mC = 5 10⁻³ C
d = 20 cm = 0.20 m
let's calculate
F = 9 10⁹
F = 1.125 10⁻² N
To find the direction of the force we use that charges of the same sign repel each other, as in this case there is a positive and a negative charge, the force between them is attraction
Explanation:
Doing homework is risky behaviour broo
<span>The gravitational pull of the sun and moon combined
create larger than normal tides.</span>
Answer:
A. carbon and boron
Explanation:
Carbon and boron is not an alloy.
An allow forms between metals and metals using their huge electron could.
Carbon is a non-metal, boron is a also a non-metal
Two non-metals combining together does not make an alloy.
Iron, nickel, aluminum are all metals.