Fulcrum need to be positioned balanced with weight on both the sides following law of lever.
What is the physical law of the lever?
- It is the foundation for issues with weight and balance. According to this rule, a lever is balanced when the weight multiplied by the arm on one side of the fulcrum, which serves as the pivot point for the device, equals the weight multiplied by the arm on the opposing side.
- The lever is balanced, in other words, when the sum of the moments about the fulcrum is zero.
- The situation in which the positive moments (those attempting to turn the lever clockwise) equal the negative moments is known as this (those that try to rotate it counterclockwise).
- Moving the weights closer to or away from the fulcrum, as well as raising or lowering the weights, can alter the balance point, or CG, of the lever.
Learn more about the Fulcrum with the help of the given link:
brainly.com/question/16422662
#SPJ4
The movement of air flows from high pressure to low pressure
Answer:
Explanation:
BMI= weight/(height × height) ; weight in kilogram and height in metter
= 58kg / (1.61m × 1.61m )
= (58/ 2.5921) kg/
= 22.375 kg/
≈ 22.4 kg/
Answer: c
Explanation:
Sound waves cannot travel through a medium
Answer:
Explanation:
The concept of a new strong nuclear force was introduced. In 1935, the first theory for this new force was developed by the Japanese physicist Hideki Yukawa, who suggested that the nucleons would exchange particles between each other and this mechanism would create the force.