<h2> ║∧║······→Hello.←······║∧║</h2>
Your answer should be:
N2 + O2 → 2NO
<h2>····················································································</h2>
I hope this answered your question!
Thanks for spending time reading this :)
(<em>A brainliest would be appreciated!)</em>
⊕If this answer doesn't answer your question or you are displeased by it please tell me in the comments I would like to know. And if I can, I will remove it.⊕
<h2>Have a wonderful day</h2>
PH stands for potential hydrogen.
pH can be accurately tested using acid-based indicators since it is a part of the pH of something itself. (acid and bases) The indicators themselves work when the acidic properties of the indicator begins to dissolve and form ions which gives the color indicating the pH.
Answer:
The structures shown by dots and lines to give the exact number of electrons in the outer most shell is explained by Lewis Structures.
Explanation:
Lewis structures are those structures in which the diagram is shown using the electron representation. They are easy to understand as the diagram completely depicts where the electrons are shared and where they are transferred. The diagram also explains where there is a single bond and where there is a di covalent bond or tri covalent bond explaining where the single , double or triple electron pair is shared. The electrons are shown by dots or lines.
For example CCl₄ can be shown as follows
..
.. Cl..
.. ..
..Cl..----------C----------..Cl..
..
.. Cl..
The picture shows that each chlorine has six electrons in its outer shell and then a pair of electron is shared with carbon forming a single covalent bond.
Similarly methane CH4 can also be shown.
The hydrogen has one electron and it shares an electron from carbon stabilising itself forming methane.
Which is a correct description of the organization of subatomic particles in atoms?
Protons and neutrons are tightly packed into a small nucleus. Electrons occupy the space
outside the nucleus
hope this helps.
Answer:
Explanation:
Just saw your request regarding answering this so here it is:
All of them belong of Group 1 in periodic table and thus are highly reactive! Pattern of reactivity for Group 1 (Alkali metals) increases as you move down the group as their radius keeps increasing and thus electrons can be easily lost. Thus, to ID the lumps, Sheena should look at their reactivity and she should get the following trend:
Most reactive: Potassium (K)
Intermediate: Sodium (Na)
Least reactive: Lithium (Li)
Hope it helps!