True... there are better ways using less materials and printing is that
Answer:
103.9 g
Explanation:
First <u>we convert 54.0 g of propane (C₃H₈) into moles</u>, using its <em>molar mass</em>:
- 54.0 g ÷ 44 g/mol = 1.23 mol C₃H₈
Then we <u>convert 1.23 moles of C₃H₈ into moles of CO₂</u>, using the <em>stoichiometric coefficients</em>:
- 1.23 mol C₃H₈ *
= 3.69 mol CO₂
We <u>convert 3.69 moles of CO₂ into grams</u>, using its <em>molar mass</em>:
- 3.69 mol CO₂ * 44 g/mol = 162.36 g
And <u>apply the given yield</u>:
- 162.36 g * 64.0/100 = 103.9 g
Answer:
The percentage abundance of Eu isotopes are 52 % and 48 %
.
Explanation:
The formula for the calculation of the average atomic mass is:
Given that:
Since the element has only 2 isotopes, so the let the percentage of first be x and the second is 100 -x.
For first isotope,:
% = x %
Mass = 151.0 amu
For second isotope :
% = 100 - x
Mass = 153.0 amu
Given, Average Mass = 151.96 amu
Thus,
Solving for x, we get that:
x = 52 %
<u>Thus percentage abundance of Eu isotopes are 52 % and 48 %
.</u>
Answer:
- <u><em>No, I would not consider a metal to be a plasma because plasma is just another state of matter, and the copper wire is in solid state.</em></u>
Explanation:
Metal is not a state of matter. Metals can be solid or liquid (molten) depending on their melting point and the temperature at which they are.
Plasma is a state of matter, similar to gas, but it is reached only at very high temperatures like in the Sun. The particles in plasma state are not neutral atoms or molecules but negatively charged ions and electrons.
The copper wire is yet a solid, thus it cannot be considered a plasma.
Metals can be in plasma state only if the temperature is too high, like the temperatures in the stars. In fact, the metals in the Sun and other hotter stars are in plasma state.
Answer:
Be (899 kj/mol) , Se (940.9 kj/mol), Ne(2081 kj/mol), He (2370 kj/mol),
Explanation:
For noble gases as they have complete octet so they require high amount of energy to remove the electron.
Trend along period:
As we move from left to right across the periodic table the number of valance electrons in an atom increase. The atomic size tend to decrease in same period of periodic table because the electrons are added with in the same shell. When the electron are added, at the same time protons are also added in the nucleus. The positive charge is going to increase and this charge is greater in effect than the charge of electrons. This effect lead to the greater nuclear attraction. The electrons are pull towards the nucleus and valance shell get closer to the nucleus. As a result of this greater nuclear attraction atomic radius decreases and ionization energy increases because it is very difficult to remove the electron from atom and more energy is required.
Trend along group:
As we move down the group atomic radii increased with increase of atomic number. The addition of electron in next level cause the atomic radii to increased. The hold of nucleus on valance shell become weaker because of shielding of electrons thus size of atom increased.
As the size of atom increases the ionization energy from top to bottom also decreases because it becomes easier to remove the electron because of less nuclear attraction and as more electrons are added the outer electrons becomes more shielded and away from nucleus.