Answer:
The two different atoms are able to combine their electrons to become stable.
hope this helps :)
Answer:
Draw circles to represent the electron shell of each atom overlapping the circles where the atoms are bonded. Add dots to represent the outer electrons of one type of atom (H). Add crosses to represent the outer electrons of the other type of atom (Cl). Make sure the electrons are always in pairs.
CH2O2 formic acid I believe so
At a constant temperature and pressure, liquids retain their volume
Answer:
24.0 g C₃H₈
Explanation:
To find the mass of C₃H₈, you need to (1) convert grams CO/H₂ to moles CO/H₂ (via molar mass), then (2) convert moles CO/H₂ to moles C₃H₈ (via mole-to-mole ratio from reaction coefficients), and then (3) convert moles C₃H₈ to grams C₃H₈ (via molar mass). It is important to arrange the conversions/ratios in a way that allows for the cancellation of units (the desired unit should be in the numerator). The final answer should have 3 sig figs to reflect the sig figs in the given values.
Molar Mass (CO): 12.011 g/mol + 15.998 g/mol
Molar Mass (CO): 28.009 g/mol
Molar Mass (H₂): 2(1.008 g/mol)
Molar Mass (H₂): 2.016 g/mol
Molar Mass (C₃H₈): 3(12.011 g/mol) + 8(1.008 g/mol)
Molar Mass (C₃H₈): 44.097 g/mol
3 CO + 7 H₂ ----> 1 C₃H₈ + 3 H₂O
^ ^ ^
45.8 g CO 1 mole 1 mole C₃H₈ 44.097 g
----------------- x ------------------ x -------------------- x ------------------ =
28.009 g 3 moles CO 1 mole
= 24.0 g C₃H₈
87.3 g H₂ 1 mole 1 mole C₃H₈ 44.097 g
---------------- x --------------- x --------------------- x ----------------- =
2.016 g 7 moles H₂ 1 mole
= 273 g C₃H₈
It was necessary to find the mass of the products from both of the reactants because you did not know which one was the limiting reagent. The limiting reagent is the reactant which is completely used up first. Because CO produced the smaller amount of product, it must be the limiting reagent. Therefore, the actual amount of C₃H₈ produced is 24.0 grams.