Answer:
See explanation
Explanation:
Electron affinity is the energy released when an extra electron is added to a neutral gaseous atom. A negative value of electron affinity indicates that energy is given out and vice versa.
Metals have positive electron affinity since electrons rarely accept electrons, so;
Na(g)+ 1e^- → Na^-(g) positive
Mg(g)+1e^- → Mg^-(g) positive
For the last case; Br(g)+ 1e^- → Br^-(g), the electron affinity for the non-metals is negative. hence the answer
The answer is c hope it helps
250 kJ of energy are removed from a 4.00 x 102 g sample of water at 60˚C. Will the sample of water completely freeze: Yes, because there is enough energy.
<h3>At what temperature would a sample of water freeze?</h3>
- Note from the Facilitator: At certain temperatures, water changes its condition due to temperature variations. At sea level, fresh water changes from a solid to a liquid at 32°F (0°C). Liquid water freezes at temperatures below 32°F (0°C); this temperature is known as the freezing point of water.
- The fact that a single water molecule cannot transform into a solid, liquid, or gas is the answer. These names refer to collective behaviors of water molecules rather than to individual molecules.
- For instance, the solid (ice) has a collection of molecules that are bound together and arranged in a predictable manner. That cannot be accomplished by a single molecule alone
250 kJ of energy are removed from a 4.00 x 102 g sample of water at 60˚C. Will the sample of water completely freeze: Yes, because there is enough energy.
To learn more about water freezing, refer to:
brainly.com/question/15209660
#SPJ9
Answer:
2nd option
Explanation:
Molarity is the number of moles of the solute (NaCl) in 1 litre of the solution (NaCl solution).
Given: concentration= 232g/ L
what we are trying to achieve is __mol/ L.
So in 1 litre, we have 232g of NaCl.
To convert mass to mole, we divide it by the Mr.
Given that the Mr is 58g/mol,
number of moles
= 232 ÷58
= 4
Thus, 1 litre has 4 moles of NaCl.
Therefore, the molarity is 4.0 mol/L.
Answer:
2s and 2pₓ
Explanation:
The figure below shows the orbitals of HCN.
The sp orbitals on C are formed by the hybridization of its 2s orbital and its 2pₓ orbital
.
2s + 2p ⟶ 2sp + 2sp