Answer:
Evaporation occurs because among the molecules near the surface of the liquid there are always some with enough heat energy to overcome the cohesion of their neighbors and escape. At higher temperatures the number of energetic molecules is greater, and evaporation is more rapid.
Answer: Option (b) is the correct answer.
Explanation:
It is known that metals are the species which readily lose an electron and tend to attain a positive charge.
For example, atomic number of sodium is 11 and its is an alkali metal. It electronic distribution is 2, 8, 1.
And, in order to attain stability it readily loses an electron and thus it become
ion.
Also, it is known that species which tend to transfer or donate their valence electrons to other atoms tend to form ionic bond and the compound formed is known as ionic compound.
Therefore, we can conclude that the statement metal atoms held together by ionic bonds best describes a metal solid.
K + I - > KI
Potassium (needs to lose 1 electron) responds with Iodine (needs to pick up 1 electron) to fulfill both component's octet, shaping a salt, potassium iodide
This is a similar case for NaCl, simply unique components. Trust this made a difference.
The particles are quite tightly packed together but still have enough room to be able to move and flow, their bonds aren't as strong as a solids are
The rules of base pairing (or nucleotide pairing) are: A with T: the purine adenine (A) always pairs with the pyrimidine thymine (T) C with G: the pyrimidine cytosine (C) always pairs with the purine guanine (G)
The nucleotides in a base pair are complementary which means their shape allows them to bond together with hydrogen bonds. The A-T pair forms two hydrogen bonds. The C-G pair forms three. The hydrogen bonding between complementary bases holds the two strands of DNA together.