Answer:c
Explanation: because if you work it in a paper it should like lil wit is straight the numbers are going up by 16
Answer:
Your answer will be C. 3.8 kPa.
Answer:
1 mile
Explanation:
We can use the following equation of motion to solve for this problem:

where v m/s is the final take-off velocity of the airplane,
initial velocity of the can when it starts from rest, a is the acceleration of the airplanes, which are the same, and
is the distance traveled before takeoff, which is minimum runway length:


From here we can calculate the distance ratio


Since the 2nd airplane has the same acceleration but twice the velocity


So the minimum runway length is 1 mile
Explanation:
Area=1.5(1.5)=2.25m^2
Force of gravity=10N
\begin{gathered}\\ \sf\longmapsto Pressure=\dfrac{Force}{Area}\end{gathered}
⟼Pressure=
Area
Force
\begin{gathered}\\ \sf\longmapsto Pressure=\dfrac{10}{2.25}\end{gathered}
⟼Pressure=
2.25
10
\begin{gathered}\\ \sf\longmapsto Pressure=4.4Pa\end{gathered}
⟼Pressure=4.4Pa
Except for mass, length, time, and electric charge, EVERY quantity is
a combination of units ... of THOSE units in fact. Hadn't you noticed ?