Answer:
The sum of the molar masses of each isotope of the element.
Answer:
n=6 to n=3 (B)
Explanation:
Energy of an electron present in the
orbit is directly proportional to
.Hence a transistion from one orbit to another orbit emits an energy proportional to the difference of their squares of the orbits. that is if an electron travels from orbit n1 to orbit n2 then it emits an energy corresponding to
.So in the above question the highest energy emission occurs when an electron moves from n=6 to n=3.(Highest difference of energy levels).
The empirical formula for this vitamin : C₃H₄O₃
<h3>Further explanation
</h3>
The empirical formula is the smallest comparison of atoms of compound =mole ratio of the components
The principle of determining empirical formula
- Determine the mass ratio of the constituent elements of the compound.
- Determine the mole ratio by dividing the percentage by the atomic mass
Mass of C in CO₂ :(MW C = 12 g/mol, CO₂=44 g/mol)

Mass of H in H₂O :(MW H = 1 g/mol, H₂O = 18 g/mol)

Mass O = Mass sample - (mass C + mass H) :

mol ratio C : H : O =

Answer: When maganese dioxide is added to hydrogen chloride you get water maganese dichloride and chlorine gas then balanced equation is
.
Explanation:
The word equation is given as maganese dioxide is added to hydrogen chloride you get water maganese dichloride and chlorine gas.
Now, in terms of chemical formulae this reaction equation will be as follows.

Here, number of atoms on reactant side are as follows.
Number of atoms on product side are as follows.
To balance this equation, multiply HCl by 4 on reactant side and multiply
by 2 on product side. Therefore, the equation can be rewritten as follows.

Hence, number of atoms on reactant side are as follows.
Number of atoms on product side are as follows.
Since, this equation contains same number of atoms on both reactant and product side. Therefore, this equation is now balanced equation.
Thus, we can conclude that when maganese dioxide is added to hydrogen chloride you get water maganese dichloride and chlorine gas then balanced equation is
.
Molar mass is the mass of a given substance divided by the amount of that substance, measured in g/mol.