Answer:
0.064 mg/kg/day
6.25% from water, 93.75% from fish
Explanation:
Density of water is 1 kg/L, so the concentration of the chemical in the water is 0.1 mg/kg.
The BCF = 10³, so the concentration of the chemical in the fish is:
10³ = x / (0.1 mg/kg)
x = 100 mg/kg
For 2 L of water and 30 g of fish:
2 kg × 0.1 mg/kg = 0.2 mg
0.030 kg × 100 mg/kg = 3 mg
The total daily intake is 3.2 mg. Divided by the woman's mass of 50 kg, the dosage is:
(3.2 mg/day) / (50 kg) = 0.064 mg/kg/day
b) The percent from the water is:
0.2 mg / 3.2 mg = 6.25%
And the percent from the fish is:
3 mg / 3.2 mg = 93.75%
Answer:
COP = 0.090
Explanation:
The general formula for COP is:
COP = Desired Output/Required Input
Here,
Desired Output = Heat removed from water while cooling
Desired Output = (Specific Heat of Water)(Mass of Water)(Change in Temperature)/Time
Desired Output = [(4180 J/kg.k)(3.1 kg)(25 - 11)k]/[(12 hr)(3600 sec/hr)]
Desired Output = 4.199 W
And the required input can be given as electrical power:
Required Input = Electrical Power = (Current)(Voltage)
Required Input = (2.9 A)(16 V) = 46.4 W
Therefore:
COP = 4.199 W/46.4 W
<u>COP = 0.090</u>
C it would be c because that has more and the others have less
Answer:
and my favorite song is popular loner
Explanation:
my favorite rapper is rod wave
Answer:
The principal stresses are σp1 = 27 ksi, σp2 = -37 ksi and the shear stress is zero
Explanation:
The expression for the maximum shear stress is given:

Where
σx = stress in vertical plane = 20 ksi
σy = stress in horizontal plane = -30 ksi
τM = 32 ksi
Replacing:

Solving for τxy:
τxy = ±19.98 ksi
The principal stress is:

Where
σp1 = 20 ksi
σp2 = -30 ksi
(equation 1)
equation 2
Solving both equations:
σp1 = 27 ksi
σp2 = -37 ksi
The shear stress on the vertical plane is zero