is the volume of the sample when the water content is 10%.
<u>Explanation:</u>
Given Data:

First has a natural water content of 25% =
= 0.25
Shrinkage limit, 

We need to determine the volume of the sample when the water content is 10% (0.10). As we know,
![V \propto[1+e]](https://tex.z-dn.net/?f=V%20%5Cpropto%5B1%2Be%5D)
------> eq 1

The above equation is at
,

Applying the given values, we get

Shrinkage limit is lowest water content

Applying the given values, we get

Applying the found values in eq 1, we get


Answer:
B false it is illegal to only have got fog lights on though and bright headlights because it can distract other drivers going last and if the y are distracted then that will cause a collision
Hope this helps :)
Explanation:
Answer:
(Option B)
Explanation:
The absolute pressure of the air-filled tank is:


Answer:
Explanation:
We use kinetic friction when a body is moving i.e.
for calculations.
Static friction is used when a body is in rest while kinetic friction is used when a body is moving and its value is quite low as compared to static friction .
Static friction value increases as we apply more force while kinetic friction occurs when there is relative motion between bodies.
Answer:
The Poisson's Ratio of the bar is 0.247
Explanation:
The Poisson's ratio is got by using the formula
Lateral strain / longitudinal strain
Lateral strain = elongation / original width (since we are given the change in width as a result of compession)
Lateral strain = 0.15mm / 40 mm =0.00375
Please note that strain is a dimensionless quantity, hence it has no unit.
The Longitudinal strain is the ratio of the elongation to the original length in the longitudinal direction.
Longitudinal strain = 4.1 mm / 270 mm = 0.015185
Hence, the Poisson's ratio of the bar is 0.00375/0.015185 = 0.247
The Poisson's Ratio of the bar is 0.247
Please note also that this quantity also does not have a dimension