1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
skelet666 [1.2K]
4 years ago
6

The solid cylinders AB and BC are bonded together at B and are attached to fixed supports at A and C. The modulus of rigidity is

3.3 × 106 psi for aluminum and 5.9 × 106 psi for brass. If T = 14 kip·in, a=1.1 in. and b=2.2 in., determine (a) The reaction torque at A (b) Maximum shear stress in BC
Engineering
1 answer:
romanna [79]4 years ago
8 0

Answer:

a) 0.697*10³ lb.in

b) 6.352 ksi

Explanation:

a)

For cylinder AB:

Let Length of AB = 12 in

c=\frac{1}{2}d=\frac{1}{2} *1.1=0.55in\\ J=\frac{\pi c^4}{2}=\frac{\pi}{2}0.55^4=0.1437\ in^4\\

\phi_B=\frac{T_{AB}L}{GJ}=\frac{T_{AB}*12}{3.3*10^6*0.1437}  =2.53*10^{-5}T_{AB}

For cylinder BC:

Let Length of BC = 18 in

c=\frac{1}{2}d=\frac{1}{2} *2.2=1.1in\\ J=\frac{\pi c^4}{2}=\frac{\pi}{2}1.1^4=2.2998\ in^4\\

\phi_B=\frac{T_{BC}L}{GJ}=\frac{T_{BC}*18}{5.9*10^6*2.2998}  =1.3266*10^{-6}T_{BC}

2.53*10^{-5}T_{AB}=1.3266*10^{-6}T_{BC}\\T_{BC}=19.0717T_{AB}

T_{AB}+T_{BC}-T=0\\T_{AB}+T_{BC}=T\\T_{AB}+T_{BC}=14*10^3\ lb.in\\but\ T_{BC}=19.0717T_{AB}\\T_{AB}+19.0717T_{AB}=14*10^3\\20.0717T_{AB}=14*10^3\\T_{AB}=0.697*10^3\ lb.in\\T_{BC}=13.302*10^3\ lb.in

b) Maximum shear stress in BC

\tau_{BC}=\frac{T_{BC}}{J}c=13.302*10^3*1.1/2.2998=6.352\ ksi

Maximum shear stress in AB

\tau_{AB}=\frac{T_{AB}}{J}c=0.697*10^3*0.55/0.1437=2.667\ ksi

You might be interested in
Write a program that asks the user to input a vector of integers of arbitrary length. Then, using a for-end loop the program exa
ELEN [110]

Answer:

%Program prompts user to input vector

v = input('Enter the input vector: ');

%Program shows the value that user entered

fprintf('The input vector:\n ')

disp(v)

%Loop for checking all array elements

for i = 1 : length(v)

   %check if the element is a positive number

   if v(i) > 0

       %double the element

       v(i) = v(i) * 2;

   %else the element is negative number.

   else

       %triple the element

       v(i) = v(i) * 3;

   end

end

%display the modified vector

fprintf('The modified vector:\n ')

disp(v)

4 0
4 years ago
Identify the different engineering activities/steps in the engineering design process for each steps,summarize in 1–3 sentences
Gennadij [26K]

Answer:

Hi how are you doing today Jasmine

5 0
3 years ago
Determine the slopes and deflections at points B and C for the beam shown below by the moment-area method. E=constant=70Gpa I=50
inn [45]

Answer:

hello your question is incomplete attached below is the complete question

answer :

Slopes : B = 180 mm , C = 373 mm

Deflection: B = 0.0514 rad ,  C = 0.077 rad

Explanation:

Given data :

I = 500(10^6) mm^4

E = 70 GPa

The M / EI  diagram is attached below

<u><em>Deflection angle at B</em></u>

∅B = ∅BA = [ 150 (6) + 1/2 (300)*6 ] / EI

                 = 1800 / ( 500 * 70 ) = 0.0514 rad

<u><em>slope at B </em></u>

ΔB = ΔBA = [ 150(6)*3 + 1/2 (300)*6*4 ] / EI

                 = 6300 / ( 500 * 70 ) = 0.18 m = 180 mm

<u><em>Deflection angle at C </em></u>

∅C = ∅CA = [ 1800 + 300*3 ] / EI

                 = 2700 / ( 500 * 70 )

                 = 2700 / 35000 = 0.077 rad

<u><em>Slope at C </em></u>

ΔC = [ 150 * 6 * 6 + 1/2 (800)*6*7 + 300(3) *1.5 ]

     = 13050 / 35000 = 373 mm

3 0
3 years ago
Write a program that randomly chooses between three different colors for displaying text on the screen. Use a loop to display tw
11Alexandr11 [23.1K]

Answer:

INCLUDE Irvine32.inc

.data

msgIntro  byte "This is Your Name's fourth assembly extra credit program. Will randomly",0dh,0ah

         byte "choose between three different colors for displaying twenty lines of text,",0dh,0ah

         byte "each with a randomly chosen color. The color probabilities are as follows:",0dh,0ah

         byte "White=30%,Blue=10%,Green=60%.",0dh,0ah,0

msgOutput byte "Text printed with one of 3 randomly chosen colors",0

.code

main PROC

;

//Intro Message

       mov edx,OFFSET msgIntro  ;intro message into edx

       call WriteString         ;display msgIntro

       call Crlf                ;endl

       call WaitMsg             ;pause message

       call Clrscr              ;clear screen

       call Randomize           ;seed the random number generator

       mov edx, OFFSET msgOutput;line of text

       mov ecx, 20              ;counter (lines of text)

       L1:;//(Loop - Display Text 20 Times)

       call setRanColor         ;calls random color procedure

       call SetTextColor        ;calls the SetTextColor from library

       call WriteString         ;display line of text

       call Crlf                ;endl

       loop L1

exit

main ENDP

;--

setRanColor PROC

;

; Selects a color with the following probabilities:

; White = 30%, Blue = 10%, Green = 60%.

; Receives: nothing

; Returns: EAX = color chosen

;--

       mov eax, 10              ;range of random numbers (0-9)

       call RandomRange         ;EAX = Random Number

       .IF eax >= 4          ;if number is 4-9 (60%)

       mov eax, green           ;set text green

       .ELSEIF eax == 3         ;if number is 3 (10%)

       mov eax, blue            ;set text blue

       .ELSE                    ;number is 0-2 (30%)

       mov eax, white           ;set text white

       .ENDIF                   ;end statement

       ret

setRanColor ENDP

6 0
3 years ago
A binary star system consists of two stars of masses m1m1m_1 and m2m2m_2. The stars, which gravitationally attract each other, r
d1i1m1o1n [39]

Answer:

          a_c_2=\dfrac{a_c_1\times m_1}{m_2}

Explanation:

The question is: <em>Find the magnitude of the centripetal acceleration of the star with mass m₂</em>

The <em>centripetal acceleration</em> is the quotient of the centripetal force and the mass.

                a_c=\dfrac{F_c}{m}

Thus, you can write the equations for each star:

     

       a_c_1=\dfrac{F_c_1}{m_1}

       a_c_2=\dfrac{F_c_2}{m_2}

As per Newton's third law, the centripetal forces are equal in magnitude. Then:

       a_c_1\times m_1=a_c_2\times m_2

Now you can clear a_c_2:

          a_c_2=\dfrac{a_c_1\times m_1}{m_2}

6 0
4 years ago
Other questions:
  • A rectangular beam of width b = 15 in., effective depth d = 20.5 in., and total depth h = 23 in. spans 18.5 ft. between simple s
    14·1 answer
  • Which aluminum alloy would be a better choice for automobile sheet metal, considering this material will need to be formable int
    11·1 answer
  • An insulated rigid tank of volume 8 m3 initially contains air at 600 kPa and 400 K. A valve connected to the tank is opened, and
    10·1 answer
  • what is the expected life 1 inch diameter bar machined from AISI 1020 CD Steel is subjected to alternating bending stress betwee
    9·1 answer
  • Why did fprtmiu78t7ty87uhyu
    12·1 answer
  • Worth 20 points! Please help ASAP!
    5·1 answer
  • What regulates the car engines temperature
    10·2 answers
  • Need help, I will give cake :))<br><br> + branliest
    14·2 answers
  • Scrooge McNugget wants to store information (names, addresses, descriptions of embarrassing moments, etc.) about the many ducks
    6·1 answer
  • What do we need to travel farther distances in space
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!