1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dominik [7]
3 years ago
12

While on a sailboat at anchor, you notice that 15 waves pass its bow every minute. The waves have a speed of 6.0 m/s . Part A Wh

at is the distance between two adjacent wave crests
Physics
1 answer:
Alchen [17]3 years ago
8 0

Answer:

Distance between two adjacent wave crests = 24m

Explanation:

Distance= speed × time

Distance traveled by waves in 60 seconds (15 crests)= 15 × distance

15 × distance = 6,0 (meters/second) × 60 seconds

distance = (360 meters) / 15 = 24 meters (between two adyacent waves)

You might be interested in
Which is not one of the three forms of energy that travels to earth
Tju [1.3M]
Is there options for this??
5 0
2 years ago
Please help. I don’t understand this
skad [1K]

The short answer is that the displacement is equal tothe area under the curve in the velocity-time graph. The region under the curve in the first 4.0 s is a triangle with height 10.0 m/s and length 4.0 s, so its area - and hence the displacement - is

1/2 • (10.0 m/s) • (4.0 s) = 20.00 m

Another way to derive this: since velocity is linear over the first 4.0 s, that means acceleration is constant. Recall that average velocity is defined as

<em>v</em> (ave) = ∆<em>x</em> / ∆<em>t</em>

and under constant acceleration,

<em>v</em> (ave) = (<em>v</em> (final) + <em>v</em> (initial)) / 2

According to the plot, with ∆<em>t</em> = 4.0 s, we have <em>v</em> (initial) = 0 and <em>v</em> (final) = 10.0 m/s, so

∆<em>x</em> / (4.0 s) = (10.0 m/s) / 2

∆<em>x</em> = ((4.0 s) • (10.0 m/s)) / 2

∆<em>x</em> = 20.00 m

5 0
2 years ago
Kevin is refinishing his rusty wheelbarrow. He moves his sandpaper back and forth 45 times over a rusty area, each time moving a
dmitriy555 [2]
W = _|....F*dx*cos(a)........With F=force, x=distance over which force acts on object,
.......0.............................and a=angle between force and direction of travel.

Since the force is constant in this case we don't need the equation to be an integral expression, and since the force in question - the force of friction - is always precisely opposite the direction of travel (which makes (a) equal to 180 deg, and cos(a) equal to -1) the equation can be rewritted like so:

W = F*x*(-1) ............ or ............. W = -F*x

The force of friction is given by the equation: Ffriction = Fnormal*(coeff of friction)

Also, note that the total work is the sum of all 45 passes by the sandpaper. So our final equation, when Ffriction is substituted, is:

W = (-45)(Fnormal)(coeff of friction)(distance)
W = (-45)...(1.8N).........(0.92).........(0.15m)
W = ................-11.178 Joules
5 0
3 years ago
Machmer Hall is 400 m North and 180 m West of Witless.
yan [13]

Answer:

The distance from Witless to Machmer is 438.63 m.

Explanation:

Given that,

Machmer Hall is 400 m North and 180 m West of Witless.

We need to calculate the distance

Using Pythagorean theorem

D = \sqrt{(d_{m})^2+(d_{w})^2}

Where, d_{m} =distance of Machmer Hall

d_{w} =distance of Witless

Put the value into the formula

D = \sqrt{(400)^2+(180)^2}

D=438.63\ m

Hence, The distance from Witless to Machmer is 438.63 m.

5 0
3 years ago
A muon has a rest mass energy of 105.7 MeV, and it decays into an electron and a massless particle. If all the lost mass is conv
sergeinik [125]

Answer:

The electron’s velocity is 0.9999 c m/s.

Explanation:

Given that,

Rest mass energy of muon = 105.7 MeV

We know the rest mass of electron = 0.511 Mev

We need to calculate the value of γ

Using formula of energy

K_{rel}=(\gamma-1)mc^2

\dfrac{K_{rel}}{mc^2}=\gamma-1

Put the value into the formula

\gamma=\dfrac{105.7}{0.511}+1

\gamma=208

We need to calculate the electron’s velocity

Using formula of velocity

\gamma=\dfrac{1}{\sqrt{1-(\dfrac{v}{c})^2}}

\gamma^2=\dfrac{1}{1-\dfrac{v^2}{c^2}}

\gamma^2-\gamma^2\times\dfrac{v^2}{c^2}=1

v^2=\dfrac{1-\gamma^2}{-\gamma^2}\times c^2

Put the value into the formula

v^2=\dfrac{1-(208)^2}{-208^2}\times c^2

v=c\sqrt{\dfrac{1-(208)^2}{-208^2}}

v=0.9999 c\ m/s

Hence, The electron’s velocity is 0.9999 c m/s.

6 0
2 years ago
Other questions:
  • The mass of an electron is ____. A higher than the mass of the proton or the neutron
    14·2 answers
  • Meg walks 5 blocks south and then turns around and walks 8 blocks back to the north. The distance that she walks is 13 blocks. W
    11·1 answer
  • A right triangle has a hypotenuse of 37 and a leg of 10. What is the second leg of the triangle?
    6·1 answer
  • Autorhythmic cells can generate action potentials spontaneously because they have Autorhythmic cells can generate action potenti
    15·2 answers
  • What is the new kinetic energy of the 1900 kg ship on the right moving at 4 m/s?
    13·2 answers
  • For the magnetic field at some random angle to the plane of the small coil, draw a picture showing only the small coil, a vector
    10·1 answer
  • Answers? I’m very bad in physics
    15·1 answer
  • Multiple choice: Sunspots appear dark because
    8·1 answer
  • The bonds of the products store 22kJ more energy than the bonds of the reactants. How is energy conserved during this reaction?
    12·1 answer
  • After oxygen has been administered, the next priority intervention the nurse would initiate for a patient with a pulmonary embol
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!