1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dominik [7]
3 years ago
12

While on a sailboat at anchor, you notice that 15 waves pass its bow every minute. The waves have a speed of 6.0 m/s . Part A Wh

at is the distance between two adjacent wave crests
Physics
1 answer:
Alchen [17]3 years ago
8 0

Answer:

Distance between two adjacent wave crests = 24m

Explanation:

Distance= speed × time

Distance traveled by waves in 60 seconds (15 crests)= 15 × distance

15 × distance = 6,0 (meters/second) × 60 seconds

distance = (360 meters) / 15 = 24 meters (between two adyacent waves)

You might be interested in
What is the best cooking temperature for poultry low or high.
ipn [44]

Answer:

165 degrees F (high)

Explanation:

to destroy the most heat pathogens found in raw poultry

3 0
2 years ago
Please answer this fast
Natali5045456 [20]

the answer choice will be A because they travel at the same speed through only light not one material.

3 0
3 years ago
Read 2 more answers
How many moles are in 73.4 grams of Phosphorus?
mylen [45]
23.2


hope this helped
4 0
3 years ago
A sewing machine uses 1.6kWh of electricity in one day. If electricity costs 9p per unit, what is the total cost in pence of usi
atroni [7]

Answer:

\huge\boxed{\sf 1.6\ units = 14.4p}

Explanation:

Since,

<h3><u>1 kWh = 1 unit</u></h3>

So,

1.6 kWh = 1.6 units

If,

<h3>1 unit = 9p</h3>

1.6 units = 9p × 1.6

1.6 units = 14.4p

\rule[225]{225}{2}

8 0
1 year ago
Un the way to the moon, the Apollo astro-
kherson [118]

Answer:

Distance =  345719139.4[m]; acceleration = 3.33*10^{19} [m/s^2]

Explanation:

We can solve this problem by using Newton's universal gravitation law.

In the attached image we can find a schematic of the locations of the Earth and the moon and that the sum of the distances re plus rm will be equal to the distance given as initial data in the problem rt = 3.84 × 108 m

r_{e} = distance earth to the astronaut [m].\\r_{m} = distance moon to the astronaut [m]\\r_{t} = total distance = 3.84*10^8[m]

Now the key to solving this problem is to establish a point of equalisation of both forces, i.e. the point where the Earth pulls the astronaut with the same force as the moon pulls the astronaut.

Mathematically this equals:

F_{e} = F_{m}\\F_{e} =G*\frac{m_{e} *m_{a}}{r_{e}^{2}  } \\

F_{m} =G*\frac{m_{m}*m_{a}  }{r_{m} ^{2} } \\where:\\G = gravity constant = 6.67*10^{-11}[\frac{N*m^{2} }{kg^{2} } ] \\m_{e}= earth's mass = 5.98*10^{24}[kg]\\ m_{a}= astronaut mass = 100[kg]\\m_{m}= moon's mass = 7.36*10^{22}[kg]

When we match these equations the masses cancel out as the universal gravitational constant

G*\frac{m_{e} *m_{a} }{r_{e}^{2}  } = G*\frac{m_{m} *m_{a} }{r_{m}^{2}  }\\\frac{m_{e} }{r_{e}^{2}  } = \frac{m_{m} }{r_{m}^{2}  }

To solve this equation we have to replace the first equation of related with the distances.

\frac{m_{e} }{r_{e}^{2}  } = \frac{m_{m} }{r_{m}^{2} } \\\frac{5.98*10^{24} }{(3.84*10^{8}-r_{m}  )^{2}  } = \frac{7.36*10^{22}  }{r_{m}^{2} }\\81.25*r_{m}^{2}=r_{m}^{2}-768*10^{6}* r_{m}+1.47*10^{17}  \\80.25*r_{m}^{2}+768*10^{6}* r_{m}-1.47*10^{17} =0

Now, we have a second-degree equation, the only way to solve it is by using the formula of the quadratic equation.

r_{m1,2}=\frac{-b+- \sqrt{b^{2}-4*a*c }  }{2*a}\\  where:\\a=80.25\\b=768*10^{6} \\c = -1.47*10^{17} \\replacing:\\r_{m1,2}=\frac{-768*10^{6}+- \sqrt{(768*10^{6})^{2}-4*80.25*(-1.47*10^{17}) }  }{2*80.25}\\\\r_{m1}= 38280860.6[m] \\r_{m2}=-2.97*10^{17} [m]

We work with positive value

rm = 38280860.6[m] = 38280.86[km]

<u>Second part</u>

<u />

The distance between the Earth and this point is calculated as follows:

re = 3.84 108 - 38280860.6 = 345719139.4[m]

Now the acceleration can be found as follows:

a = G*\frac{m_{e} }{r_{e} ^{2} } \\a = 6.67*10^{11} *\frac{5.98*10^{24} }{(345.72*10^{6})^{2}  } \\a=3.33*10^{19} [m/s^2]

6 0
3 years ago
Other questions:
  • during the spin dry cycle of a washing machine, the motor slows from 90 rad/s to 30 rad/s while turning the drum though an angle
    10·1 answer
  • Consider a grill with the lid closed to be a closed system. The propane provides chemical energy. The propane is ignited to prod
    13·1 answer
  • You drop a ball from a height of 1.7 m, and it bounces back to a height of 1.2 m.
    9·1 answer
  • How do you calculate final velocity
    14·2 answers
  • The substances listed on the left side of a chemical equation are the _____.
    14·2 answers
  • An accelerating voltage of 2.25 103 V is applied to an electron gun, producing a beam of electrons originally traveling horizont
    9·1 answer
  • A ball has a diameter of 3.77 cm and average density of 0.0839 g/cm3. What force is required to hold it completely submerged und
    14·1 answer
  • Explain why a black and white aeronautical map would be difficult to use
    9·1 answer
  • How much potential energy is gained by a 45kg woman climbing stairs 8.4 1 point<br> meters high?
    8·1 answer
  • What is a measure of the total ground covered?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!