Answer:
The volume of HCl to be added to completely react with the ammonia is 0.032 L or 32mL
Explanation:
Using the formula
Ca Va = Cb Vb
Cb = 0.32 M
Vb = 50 mL = 50/1000 = 0.050L
Ca = 0.5 M
Va =?
Substituting for Va in the equation, we obtain:
Va = Cb Vb / Ca
Va = 0.32 * 0.05 / 0.5
Va = 0.016 / 0.5
Va = 0.032 L
The volume of HCl to be added to completely react with the ammonia is 0.032 L or 32mL
Answer:
A) 0.95 mol
Explanation:
We will assume the gas given off in the fermentation is an ideal gas because that allows us to use the ideal gas equation.
PV = nRT
First let's convert all measurements to units that we can use
P = 702 mmHg * 1 atm/760 mmHg = 0.92368 atm
V = 25.0 L
R = 0.08206 L-atm/mol-K
T = 22.5 °C +273.15 = 295.65 K
PV = nRT
0.92368 atm * 25.0 L = n * 0.08206 L-atm/mol-K * 295.65 K
n = 0.9518 mol
Answer:
B. 1.65 L
Explanation:
Step 1: Write the balanced equation
2 SO₂(g) + O₂(g) ⇒ 2 SO₃(g)
Step 2: Calculate the moles of SO₂
The pressure of the gas is 1.20 atm and the temperature 25 °C (298 K). We can calculate the moles using the ideal gas equation.
P × V = n × R × T
n = P × V / R × T
n = 1.20 atm × 1.50 L / (0.0821 atm.L/mol.K) × 298 K = 0.0736 mol
Step 3: Calculate the moles of SO₃ produced
0.0736 mol SO₂ × 2 mol SO₃/2 mol SO₂ = 0.0736 mol SO₃
Step 4: Calculate the volume occupied by 0.0736 moles of SO₃ at STP
At STP, 1 mole of an ideal gas occupies 22.4 L.
0.0736 mol × 22.4 L/1 mol = 1.65 L
Answer:
negative but dont quote me on that
Explanation: