Answer:
1.22 x 10²⁵ molecules CO₂
Explanation:
To find the amount of molecules, you need to multiply the number of moles by Avogadro's Number. Avogadro's Number is a ratio which represents the amount of molecules per every 1 mole. It is important to arrange this ratio in a way that allows for the cancellation of units (since you are going from moles to molecules, moles should be in the denominator). The final answer should have 3 sig figs like the given value.
Avogadro's Number:
6.022 x 10²³ molecules = 1 mole
20.2 moles CO₂ 6.022 x 10²³ molecules
--------------------------- x -------------------------------------- = 1.22 x 10²⁵ molecules
1 mole
group 1 elements are metals with<u> low</u> density
<span>Inside the nucleus of an atom are protons and electrons. </span>
Answer:
He is wrong . Most accurate is Buret .
Explanation:
The number of significant figure denotes the level of accuracy of a measurement .
Beaker can measure liquid in mL upto significant figure of 2 . That means it can measure volume in terms of 10 , 20 , 30mL etc . It can not measure 25 mL
accurately . The last figure of 28 mL is read by guess in the question . So it is not an accurate measurement .
Similarly , graduated cylinder can measure liquid upto significant figure of 3 . That means it can measure volume in terms of 11 , 22 , 33 mL etc . It can not measure 25.5 mL accurately . The last figure of 28.3 mL is read by guess in the question . So it is less accurate measurement .
Similarly , buret can measure liquid upto significant figure of 4 . That means it can measure volume in terms of 11.2 , 22.3 , 33.5 mL etc . It can not measure 25.53 mL accurately . The last figure of 28.32 mL is read by guess in the question . So it is most accurate among all the three instrument because it can measure accurately mL upto one tenth of it .
Answer:
The first element is always named first, using entire element name.
Second element is named using its root and adding the suffix -ide.
Prefixes are used to indicate the number of atoms of each element that are present in the compound.
Explanation: