Answer:
Yes. The solution would be optically active.
Explanation:
Diastereomer are defined as the image that is non mirror and non -identical. It is made up of two stereoisomers. They are formed when the two stereoisomers or more than two stereoisomers of the compound have the same configuration at the equivalent stereocenters.
In the given context, as the product given is a diastereomeric mixture, the product would have an optical activity in total.
So the answer is Yes.
Answer:
The molar mass of the liquid 62.89 g/mol
Explanation:
Step 1: Data given
Mass of the sample = 0.1 grams
Temperature = 70°C
Volume = 750 mL
Pressure = 0.05951 atm
Step 2: Calculate the number of moles
p*V = n*R*T
n = (p*V)/(R*T)
⇒ with n = the number of moles gas = TO BE DETERMINED
⇒ with p = The pressure = 0.05951 atm
⇒ with V = The volume of the flask = 750 mL = 0.750 L
⇒ with R = The gasconstant = 0.08206 L*atm/K*mol
⇒with T = the temperature = 70 °C = 343 Kelvin
n = (0.05951 *0.750)/(0.08206*343)
n = 0.00159 moles
Step 3: Calculate molar mass
Molar mass = mass / moles
Molar mass =0.1 gram / 0.00159 moles
Molar mass = 62.89 g/mol
The molar mass of the liquid 62.89 g/mol
Answer:
The density of acetic acid at 30°C = 1.0354_g/mL
Explanation:
specific gravity of acetic acid = (Density of acetic acid at 30°C) ÷ (Density of water at 30°C)
Therefore, the density of acetic acid at 30°C = (Density of water at 30°C) × (Specific gravity of acetic acid at 30°C)
= 0.9956 g/mL × 1.040
= 1.0354_g/mL
Specific gravity, which is also known as relative density, is the ratio of the density of a substance to the density of a specified standard substance.
Generally the standard substance of to which other solid and liquid substances are compared is water which has a density of 1.0 kg per litre or 62.4 pounds/cubic foot at 4 °C (39.2 °F) while gases are normally compared with dry air, with a density of 1.29 grams/litre or 1.29 ounces/cubic foot under standard conditions of a temperature of 0 °C and one standard atmospheric pressure