This question involves the concepts of equilibrium and Newton's third law of motion.
The support force will be "1 pound" for the empty bucket and the support force will be "6 pounds" after pouring water into it.
- According to the condition of equilibrium, the sum of forces acting on a stationary object must be zero. Hence, the support force of the table will be equal to the total mass of the bucket.
- According to Newton's Third Law of Motion every action force has an equal but opposite reaction force. Hence, the support force will be a reaction force to the weight of the bucket.
Therefore, the support force in each case will be equal to the total mass of the bucket:
Case 1 (empty bucket):
<u>support force = 1 pound</u>
<u></u>
Case 1 (water poured):
support force = 1 pound + 5 pound
<u>support force = 6 pound</u>
<u></u>
Learn more about equilibrium here:
brainly.com/question/9076091
Inertia- a tendency to do nothing or to remain unchanged
Answer:
Explanation:
First of all we shall find the velocity at equilibrium point of mass 1.2 kg .
It will be ω A , where ω is angular frequency and A is amplitude .
ω = √ ( k / m )
= √ (170 / 1.2 )
= 11.90 rad /s
amplitude A = .045 m
velocity at middle point ( maximum velocity ) = 11.9 x .045 m /s
= .5355 m /s
At middle point , no force acts so we can apply law of conservation of momentum
m₁ v₁ = ( m₁ + m₂ ) v
1.2 x .5355 = ( 1.2 + .48 ) x v
v = .3825 m /s
= 38.25 cm /s
Let new amplitude be A₁ .
1/2 m v² = 1/2 k A₁²
( 1.2 + .48 ) x v² = 170 x A₁²
( 1.2 + .48 ) x .3825² = 170 x A₁²
A₁ = .0379 m
New amplitude is .0379 m
Answer:
0-4 acceleration comes at 12 m/s where (B) stagnates at 12 m/s and remains for 4 seconds (C) is breaks being activated slowing the car to 6 m/s in 2 seconds and (D) over the course of 4 seconds brings the car to 10 m/s.
Explanation:
The net force acting on the airplane is 25N.
Forces acting on the paper airplane when it is in the air:
- The forward force generated by the engine, propeller, or rotor is called thrust. It resists or defeats the drag force. It operates generally perpendicular to the longitudinal axis. However, as will be discussed later, this is not always the case.
- Drag is an airflow disruption generated by the wing, rotor, fuselage, and other projecting surfaces that causes a backward, decelerating force. Drag acts backward and perpendicular to the relative wind, opposing thrust.
- Weight is the total load carried by airplane, including the weight of the crew, fuel, and any cargo or baggage. Due to the influence of gravity, weight pulls the airplane downward.
- Lift—acts perpendicular to the flight path through the center of lift and opposes the weight's downward force. It is produced by the air's dynamic influence on the airfoil.
Given.
Weight of the paper airplane, F1 = 16N
The force of air resistance, F2 = 9N
Net force = F1 + F2
Net force = 25N
Thus, the net force acting on the airplane is 25N.
Learn more about the net force here:
brainly.com/question/18109210
#SPJ1