Answer:
Explanation:
According to a free body diagram the forces in the horizontal direction on body 1 would be:
F₁ = a₁*m₁ = -N
and on body 2:
F₂ = a₂*m₂ = N - F
N: normal force between the two blocks
F: frictional force on block 2
Since the two blocks are moving together, they need to have the same acceleration:
a₁ = a₂
This gives two equations with two unknown. Solving for a and N gives:


case A:
|a| = 0.96 m/s²
|N| = 2.9 N
case B:
|a| = 0.644 m/s²
|N| = 3.86 N
Answer:
7/150
Explanation:
The following data were obtained from the question:
Object distance (u) = 75cm
Image distance (v) = 3.5cm
Magnification (M) =..?
Magnification is simply defined as:
Magnification (M) = Image distance (v)/ object distance (u)
M = v /u
With the above formula, we can obtain the magnification of the image as follow:
M = v/u
M = 3.5/75
M = 7/150
Therefore, the magnification of the image is 7/150.
initial velocity of the car given as

final velocity is given as

as we know that

now we can convert final speed into m/s

now acceleration is rate of change in velocity



so the acceleration of the car is 3 m/s^2
Answer:
The answer to this question is given below in this explanation section.
Explanation:
" law of conservation of energy"
The law of conservation of energy states that energy can neither be created nor destroyed only converted from one form of energy into another.This mean that a system always has a same account of a energy,unless it is added from the outside.This is particularly confusing in the case of non conversation forces,where energy is converted from ,mechanical energy into thermal energy.but the overall energy does remain the same.The only way to use energy is to transform energy from one form to another.
The amount of energy in any system than it is determined by the following equation.
Ut=Ui +W+Q
- Ut is the total internal energy of a system.
- Ui is the initial internal energy of a system.
- W is the work done by or on the system.
- Q is the heat added to or removed by the system.
It is also possible to determined the change in internal energy of the system using the equation.
ΔU=W+Q
The mechanical energy of a system increases provided their is no loss of energy due to friction.The energy would transform to kinetic energy when the speed is increasing.Te mechanical energy of a system remain constant provided their is no loss of energy due to friction.
The law of conversation of energy which say that in a closed system total energy is conserved that is it constant.
KE1 + PE1=KE2+PE2