Answer:
177.8kJ/mol
Explanation:
In this reaction, the heat of decomposition is the same as the heat of formation. This is a decomposition reaction.
Given parameters:
ΔHf CaCO₃ = -1206.9kJ/mol
ΔHf CaO = −635.6 kJ/mol
ΔHf CO₂ = −393.5 kJ/mol
The heat of decomposition =
Sum of ΔHf of products - Sum of ΔHf of reactants
The equation of the reaction is shown below:
CaCO₃ → CaO + CO₂
The heat of decomposition = [ -635.6 + (-393.5)] - [−1206.9 ]
= -1029.1 + 1206.9
= 177.8kJ/mol
Ionic compounds share electrons :)
Answer:
The Partial pressure of Xe and Ne will be 4.95 atm and 1.55 atm. The number of moles of Xe and Ne will be 3.13 and 0.981
Explanation:
Let the total pressure of the vessel= 6.5 atm and mole fraction of Xenon= 0.761
As we know,

According to Dalton's Law of partial pressure-

Where,
The pressure of the gas component in the mixture
Mole fraction of that gas component
The total pressure of the mixture

<u>Calculation: </u>
To calculate the number of moles,
PV=nRT


Learn more about Dalton's Law of partial pressure here;
brainly.com/question/14119417
#SPJ4
Answer:
The reaction quotient (Q) before the reaction is 0.32
Explanation:
Being the reaction:
aA + bB ⇔ cC + dD
![Q=\frac{[C]^{c} *[D]^{d} }{[A]^{a}*[B]^{b} }](https://tex.z-dn.net/?f=Q%3D%5Cfrac%7B%5BC%5D%5E%7Bc%7D%20%2A%5BD%5D%5E%7Bd%7D%20%7D%7B%5BA%5D%5E%7Ba%7D%2A%5BB%5D%5E%7Bb%7D%20%20%7D)
where Q is the so-called reaction quotient and the concentrations expressed in it are not those of the equilibrium but those of the different reagents and products at a certain instant of the reaction.
The concentration will be calculated by:

You know the reaction:
PCl₅ (g) ⇌ PCl₃(g) + Cl₂(g).
So:
![Q=\frac{[PCl_{3} ] *[Cl_{2} ] }{[PCl_{5} ]}](https://tex.z-dn.net/?f=Q%3D%5Cfrac%7B%5BPCl_%7B3%7D%20%5D%20%2A%5BCl_%7B2%7D%20%5D%20%7D%7B%5BPCl_%7B5%7D%20%5D%7D)
The concentrations are:
- [PCl₃]=

- [Cl₂]=

- [PCl₅]=

Replacing:

Solving:
Q= 0.32
<u><em>The reaction quotient (Q) before the reaction is 0.32</em></u>