The correct option is this: SPECIFIC HEAT CAPACITY IS AN INTENSIVE PROPERTY AND DOES NOT DEPEND ON SAMPLE SIZE.
Generally, all the properties of matters can be divided into two classes, these are intensive and extensive properties. Intensive properties are those properties that are not determined by the quantity of the material that is present or available. Examples of intensive properties are colour, density and specific heat capacity. For instance, whether you have a bucket of water or a cup of water, the quantity does not matter, the colour of water will always remain the same. Extensive properties in contrast, are those properties that depend on the quantity of material that is available. Examples are mass, heat capacity and volume.
I think Intramolecular forces are being weakened
It wouldn’t be a good idea bc metal absorbs the weather around it. so in florida it would be too hot and in alaska it would be too cold!
B. Heating up the reaction will increase the entropy of a reaction.
<h3>
What is entropy?</h3>
Entropy is the measure of the degree of disorderliness of a system.
Entropy is also the measure of a system's thermal energy per unit temperature that is unavailable for doing useful work.
S = ΔH/T
where;
- S is entropy
- ΔH is energy input
- T is temperature
Entropy increases in reactions in which the total number of product molecules is greater than the total number of reactant molecules.
However, entropy increases as temperature increases. Thus, heating up the reaction will increase the entropy of a reaction.
Learn more about entropy here: brainly.com/question/6364271
#SPJ1
False, as oceans can act as carbon sinks along with forests.