Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions.
The type of atom has the strongest attraction for electrons in bond formation Chlorine (Ci) c<span>onsider the location of barium, chlorine, iodine, and strontium on the periodic table.</span>
Color.
Density.
Hardness.
freezing point.
Length.
Location.
Smell.
Temperature.
Volume.
Brittleness.
Hope this helps. :)
Answer:
Tetrahedral, trigonal pyramidal, trigonal bipyramidal.
Explanation:
The VSPER theory states that the bonds of sharing electrons and the lone pairs of electrons will repulse as much as possible. So, by the repulsion, the molecule will have some shape.
In the ion PO₄³⁻, the central atom P has 5 electrons in its valence shell, so it needs 3 electrons to be stable. Oxygen has 6 electrons at the valence shell and needs 2 to be stable. 3 oxygens share 1 pair of electrons with P, and the two lone pair remaining in P is shared with the other O, then the central atom makes 4 bonds and has no lone pairs, the shape is tetrahedral.
In the ion H₃O⁺, the central atom O has 6 electrons in its valence shell and needs 2 electrons to be stable. The hydrogen has 1 electron, and need 1 more to be stable. The hydrogens share 1 pair of electrons with the oxygen, then it remains 3 electrons at the central atom, and the VSPER theory states that the shape will be a trigonal pyramidal.
In the AsF₅, the central atom As has 5 valence electrons, and F has 1 electron in its valence shell, so each F shares one pair of electrons with As, and there are no lone pairs in the central atom. For 5 bonds without lone pairs, the shape is trigonal bipyramidal.
Answer:
Option C. 4.03 g
Explanation:
Firstly we analyse data.
12 % by mass, is a sort of concentration. It indicates that in 100 g of SOLUTION, we have 12 g of SOLUTE.
Density is the data that indicates grams of solution in volume of solution.
We need to determine, the volume of solution for the concentration
Density = mass / volume
1.05 g/mL = 100 g / volume
Volume = 100 g / 1.05 g/mL → 95.24 mL
Therefore our 12 g of solute are contained in 95.24 mL
Let's finish this by a rule of three.
95.24 mL contain 12 g of sucrose
Our sample of 32 mL may contain ( 32 . 12) / 95.24 = 4.03 g
4, because there are 4 quarts in 1 gallon.
Another way to think about it is 1 gallon= $1 and 1 quart= 25 cents
There are 4 quarters in a dollar.
Hope this helped..