Answer:
Negative
Explanation:
Observe that the object below moves in the positive direction with a changing velocity. An object which moves in the positive direction has a positive velocity. If the object is slowing down then its acceleration vector is directed in the opposite direction as its motion (in this case, a negative acceleration).
<h2>
Speed of motorboat is 36 km/hr and speed of current is 4 km/hr.</h2>
Explanation:
Let speed of motor boat be m and speed of current be c.
A motorboat traveling with a current can go 160 km in 4 hours.
Distance = 160 km
Time = 4 hours
Speed = m + c
We have
Distance = Speed x Time
160 = (m+c) x 4
m + c = 40 --------------------- eqn 1
Against the current it takes 5 hours to go the same distance.
Distance = 160 km
Time = 5 hours
Speed = m - c
We have
Distance = Speed x Time
160 = (m-c) x 5
m - c = 32 --------------------- eqn 2
eqn 1 + eqn 2
2m = 40 + 32
m = 36 km/hr
Substituting in eqn 1
36 + c = 40
c = 4 km/hr
Speed of motorboat is 36 km/hr and speed of current is 4 km/hr.
The magnitude of the current in wire 3 is (I₃)= 0.33A
<h3>How to calculate the value of the magnitude of the current in wire 3 ?</h3>
To calculate the magnitude of the current in wire 3 we are using the Kirchhoff’s current law,
I₁ + I₂ + I₃ = 0
Where we are given,
I₁ = current in wire 1
=0.40 A.
I₂ = current in wire 2
= -0.73 A.
We have to calculate the magnitude of the current in wire 3, I₃
Now we put the known values in above equation, we get,
I₁ + I₂ + I₃ = 0
Or, I₃ = -.(I₁ + I₂)
Or, I₃ = -.(0.40 - 0.73)
Or, I₃ = 0.33 A
From the above calculation, we can conclude that the current in wire 3 is I₃ = 0.33 A
Learn more about current:
brainly.com/question/25537936
#SPJ4
Options:
(a) Total kinetic energy of the system remains constant.
(b) Total momentum of the system is conserved.
(c) Both A and B are true.
(d) Neither A nor B are true.
Answer:
(b) Total momentum of the system is conserved.
Explanation:
An inelastic collision is a type of collision in which momentum is conserved and kinetic energy is not conserved. That is, there is loss of kinetic energy.
In an inelastic collision:
Total momentum before collision = Total momentum after collision
An example of inelastic collision is seen in the ballistic pendulum, The ballistic pendulum is a device in which a projectile such as a bullet is fired into a suspended heavy wooden stationary block.