Initial velocity, u = 4 m/s
acceleration due to gusts of wind = 3 m/s^2
time, t = 1 min = 60 s
Let distance travelled = S
From equation of motion,

Thus, the boat would have traveled 5640m after gusts picked up.
Answer:
how quickly or slowly the object is moving
Hope this helps
Answer: Add an incline or grade to the road track.
Explanation:
Refer to the figure shown below.
When a vehicle travels on a level road in a circular path of radius r, a centrifugal force, F, tends to make the vehicle skid away from the center of the circular path.
The magnitude of the force is
F = mv²/r
where
m = mass of the vehicle
v = linear (tangential) velocity to the circular path.
The force that resists the skidding of the vehicle is provided by tractional frictional force at the tires, of magnitude
μN = μW = μmg
where
μ = dynamic coefficient of friction.
At high speeds, the frictional force will not overcome the centrifugal force, and the vehicle will skid.
When an incline of θ degrees is added to the road track, the frictional force is augmented by the component of the weight of the vehicle along the incline.
Therefore the force that opposes the centrifugal force becomes
μN + Wsinθ = W(sinθ + μ cosθ).
Answer:
These all different sources of energy add to the store of electrical power that is then sent out to different locations via high powered lines. It is the energy from the sun that is harnessed using a range of technologies such as solar heating, solar architecture, photovoltaics, and artificial photosynthesis.
Hope it helps PLS MARK ME AS BRAINLIST I BEG YOU thanks :)
Answer:

Explanation:
The process during which pressure remains constant is called an isobaric process.